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Abstract. We study the task of electing egalitarian sequences of τ
committees given a set of agents with additive utilities for candidates
available in each of τ levels. We introduce several rules for electing
an egalitarian committee sequence as well as properties for such rules.
We settle the computational complexity of finding a winning sequence
for our rules and classify them against our properties. We obtain
sequential election data from existing election data from the literature.
Using this data set, we compare our rules empirically and test them
experimentally against some selected properties.

1 Prologue

Preferences can be more fine-grained than a single-committee election
can represent. For instance, instead of asking faculty members about
their representative in an appointment committee, one can ask which
candidate they prefer to be elected for each of several levels (roles),
e.g., (co-)heads, professors, researchers, students. Consequently, peo-
ple can nominate candidates differing from their ‘overall favorite’
candidate, which makes it possible to respect their opinions on a finer
scale when selecting a committee for each level. Moreover, such mul-
tilevel, sequential elections allow us to seek for additional fairness
criteria fulfilled by the committee sequence. In this work, we seek for
egalitarian committee sequences.

Splitting the question about one’s favorite representative in a com-
mittee into questions about favorite representatives for multiple roles
is just one example for a sequential election. Sequential elections can
be used for problems with a temporal component as well, for instance
which crop farmers prefer to grow in which month, or which activity
each member of a travelling group prefers for which day. Scenarios in
which people already think in categories can also be modeled this way,
e.g., selecting the favorite song, movie, or game in multiple music,
movie, or gaming genres, respectively.

Formally, our model receives the following input:

Definition 1. A cumulative1 (multilevel, sequential2) election E =
(A, C, U, κ) consists of: A set A of n agents, a sequence C =
(C1, . . . , Cτ ) of candidate subsets from a candidate set C of
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1 We focus on cumulative utilities to have some form of normalization, which

is necessary when comparing utilities between different agents.

size m not containing ∅, a sequence U = (u1, . . . , uτ ) of utili-
ties ut : A × Ct → {0, . . . , zt} such that for each a ∈ A we
have

∑
c∈Ct

ut(a, c) ≤ zt and a sequence κ = (k1, . . . , kτ ) of
nonnegative integers.

A committee sequence X = (X1, . . . , Xτ ) is a sequence of sub-
sets Xt ⊆ Ct for every t ∈ {1, . . . , τ}. A committee sequence is
valid if |Xt| ≤ kt for every t ∈ {1, . . . , τ}. There are two immediate
quality measures for valid committee sequences: the overall utility for
an agent and the overall utility for a level. Formally:

scr↔(E ,X , a) :=
∑

t∈{1,...,τ}

∑
c∈Xt

ut(a, c) (horizontal score)

and scrmin
↔ (E ,X ) := min

a∈A
scr↔(E ,X , a),

scr↕(E ,X , t) :=
∑
a∈A

∑
c∈Xt

ut(a, c) (vertical score)

and scrmin
↕ (E ,X ) := min

t∈{1,...,τ}
scr↕(E ,X , t).

Deltl et al. [8] introduced a basic version of the model which we
generalize (they consider for every t ∈ {1, . . . , τ} utilities with zt =
1 and Ct = C as well as kt = k for some given k). In particular
when zt = 1 (as in their model) we also call candidates obtaining
non-zero utility by an agent nominated. Unless specified differently,
the utility of a nominated candidate is 1. Deltl et al. [8] studied an
immediate computational problem with lower bounds on both scores.
One can translate the problem into a rule that selects a committee
sequence respecting the bounds. We study—both theoretically and
experimentally—further rules which differently fulfill the quality
measures, with a focus on the minimum horizontal score.

Our Contributions. We introduce several rules for electing an egal-
itarian committee sequence. Our five main rules are Rlex, R↔,Σ,↕,
R↔,↕,Σ, Rgreedy, and Rapp (see Section 3). Intuitively, committee
sequences computed by Rlex firstly maximize the smallest horizontal
score, then the second smallest, and so on; R↔,Σ,↕ firstly maxi-
mizes the smallest horizontal score, secondly the sum of horizontal
scores, and finally the smallest vertical score; R↔,↕,Σ firstly maxi-
mizes the smallest horizontal score, then the smallest vertical score,

2 Note that we could use unordered multisets instead of sequences in our
definition, since the actual ordering is not used in rules and properties we
focus on. Keeping the definition consistent with the literature, however,
allows to keep a simple unified syntax.



and finally the sum of scores. We show that finding a winning com-
mittee sequence for these three rules is an NP-hard task. This task
is polynomial-time solvable for Rgreedy, which intuitively tries to
mimic Rlex by iteratively selecting a candidate that improves Rlex’s
objective function the most, and for Rapp, which iteratively selects
candidates with the highest utility on each level. Rapp is clearly
non-egalitarian as it ignores horizontal scores by definition. Yet, we
consider Rapp as benchmark, since it mimics the straightforward rule
mostly used in practice when customized rules are not available or
known. To further evaluate our rules (and distinguish the egalitarian
ones), we formulate several properties for rules electing egalitarian
committee sequences (see Section 4 for selected central properties).
We show that while Rlex satisfies all of our properties, each of the
other four rules violates several desirable properties (see Table 1).

In addition to our theoretical analysis, we investigate the rules ex-
perimentally regarding their runtimes, scores, and properties. Each of
Rapp and Rgreedy runs faster than the other three, where Rlex has the
highest runtimes on average. When comparing the scores achieved by
the rules, we see, e.g., that Rgreedy performs well compared to Rlex

and achieves a clearly better minimum horizontal score on average
than Rapp (although we prove that this is not always the case). Inter-
estingly, R↔,↕,Σ achieves a larger minimum vertical score on average
than R↔,Σ,↕, whereas R↔,Σ,↕ has only slightly larger sum of scores.
When testing the number of times a rule satisfies the condition of
a property that it violates in general, we see, e.g., for each of the
properties we present, that Rgreedy satisfies the property’s conditions
for at least 91% of the instances. Overall, our results indicate that
Rgreedy is a good heuristic for Rlex, which in turn is identified as the
“most” egalitarian rule.

Related Work. Selecting committees is an important topic from
computational social choice with numerous applications following
different goals (cf. Elkind et al. [9]) such as individual excellence,
proportionality, and diversity. The latter, our focus, is important when-
ever large parts of agents shall be covered or satisfied, but it is rather
hard to formalize (see Section 4.2 from Baumeister et al. [2]). The
classical way is to follow an egalitarian approach [1], where the least
satisfied agent defines the quality of a committee.

Our model considers multi-level or sequential preferences. Com-
putational aspects of finding sequences of committees have been
considered in this context. For example Kellerhals et al. [13] and
Bredereck et al. [5] require a minimum satisfaction in each time step
with additional constraints on the difference between consecutive com-
mittees, but they do not aim for (a minimum) satisfaction of agents.
The model we use in this paper was essentially introduced by Deltl
et al. [8], who deeply analyzed computational aspects. While distinct
formal properties of rules (the focus of our paper) are well-studied in
the classical setting [1, 3, 9, 10, 15], we are not aware of any work in
the context of (offline) sequential elections. Chandak et al. [7] discuss
formal properties for proportional representative online sequences.

Categories (levels) are also used by Boehmer et al. [3], but with the
goal of allocating candidates to categories and not selecting from cate-
gories (as we do). Other aspects of selecting multiple (sub)committees
have been considered for example by Bredereck et al. [4], who also
select a sequence of committees. In that work, however, agents have
the same preferences for every time step. Mostly focusing on single-
winner decisions, Freeman et al. [11], Lackner [14], and Parkes and
Procaccia [18] do allow evolving preferences, but in an online setting.
More importantly, they use different measures of solution quality. An
offline setting is analyzed by Bulteau et al. [6] but aiming for justified
representation, which is very different to our egalitarian approach.

Further related to our setting is participatory budgeting (PB), where

some community votes on projects. Each project comes with an in-
dividual price and there is an overall budget on money being spent.
Lackner et al. [16] study a temporal PB setting where agents are parti-
tioned into groups and the goal is to have equal (temporal) fairness
after some number of allocation rounds or to optimize the Gini coeffi-
cient. Jain et al. [12] study PB with project groups (levels), but aim
for optimizing the utilitarian welfare for the voters. Rey et al. [19]
design a complex PB framework with the help of judgment aggrega-
tion, allowing to model dependencies between projects or quotas for
project types, using rules that optimize towards (super-)majorities.

Organization. In Section 3, we introduce and discuss our central
rules. In Section 4, we introduce our main properties, explain them,
and test them against our central rules. Section 5 shows our experi-
ments. Results marked with ⋆ are deferred to a paper’s full version.

2 Preliminaries

We denote by N0 and N the set of natural numbers with
and without zero, respectively. For two sequences a =
(a1, . . . , an) and b = (b1, . . . , bm), we denote by a ◦ b the
sequence (a1, . . . , an, b1, . . . , bm). For two set sequences S =
(S1, . . . , Sn) and T = (T1, . . . , Tn), we denote by S ∪ T the se-
quence (S1 ∪ T1, . . . , Sn ∪ Tn).

For A′ ⊆ A, we write ut(A
′, ·) := ∑

a∈A′ ut(a, ·) for short. Sim-
ilarly, for X ⊆ Ct, we write ut(·, X) :=

∑
c∈X ut(·, c) for short.

We also combine both notations in the obvious way. For two elec-
tions E ′ = (A′, C′, U ′ = (u′

1, . . . , u
′
τ ), κ

′), E ′′ = (A′′, C′′, U ′′ =
(u′′

1 , . . . , u
′′
τ ), κ

′′) with A′ ∩ A′′ = ∅, we denote by U ′ ∪ U ′′ the
utilities ui(a, c) = u′

i(a, c) if a ∈ A′, c ∈ C′
i, ui(a, c) = u′′

i (a, c) if
a ∈ A′′, c ∈ C′′

i , and ui(a, c) = 0 otherwise, for i ∈ {1, . . . , τ}.
Let E denote the set of all elections. For each E = (A, C, U =

(u1, . . . , uτ ), κ) ∈ E, let X(E) = {X = (X1, . . . , Xτ ) | ∀t :
Xt ⊆ Ct} denote the set of all committee sequences for E . A rule
is a mapping R(E) 7→ X′ with X′ ⊆ X(E). E.g., Rvld(E) :=
{valid X ∈ X(E)} = {(X1, . . . , Xτ ) ∈ X(E) | ∀t : |Xt| ≤ kt}.

For two committee sequences X ,X ′ we say that X ↔-
dominates X ′ if for every agent a ∈ A we have that
scr↔(E ,X , a) ≥ scr↔(E ,X ′, a) and for one agent a′ ∈ A
we have scr↔(E ,X , a′) > scr↔(E ,X ′, a′). We can also de-
fine rules upon dominance: R↔dom(E) := {X ∈ Rvld(E) |
there is no X ′ ∈ Rvld(E) that ↔-dominates X}.

3 Central Rules

We discuss our central rules R↔,Σ,↕ and R↔,↕,Σ (Section 3.1), Rlex

(Section 3.2), Rgreedy (Section 3.3), and Rapp (Section 3.4).

3.1 Max-Min and Max-Sum Rules

We introduce and study (combinations of) three rules that maximize
the minimum horizontal score, the minimum vertical score, and the
total sum of the vertical scores (note that this is the same as the sum
of the horizontal scores).

An extended rule R(E ,X′) 7→ X′′ with X′′ ⊆ X′ ⊆ X(E)
additionally receives a subset of committee sequences. Let

R↔(E ,X′) := arg maxX∈X′ scr
min
↔ (E ,X ), (1)

R↕(E ,X′) := arg maxX∈X′ scr
min
↕ (E ,X ), and (2)

RΣ(E ,X′) := arg maxX∈X′ scr
Σ
↔(E ,X ), (3)



Table 1. Summary of our results. The computational complexity refers to the problem of finding a winning committee sequence. (Superscript at yes/no refers to
the label of the corresponding observation behind the result; ∗: easy to see)

Property Rule: Rlex R↔,Σ,↕ R↔,↕,Σ Rgreedy Rapp

Computational Complexity NP-hard NP-hard NP-hard P P

↔-Pareto efficiency (P1) yes∗ yes5 no5 no6 yes∗

United h-Superadditive (P2) yes∗ yes∗ yes∗ no7 no7

Concatenated h-Superadditive (P3) yes∗ yes∗ yes∗ no7 yes∗

Independent Groups (P4) yes8 no9 no9 yes8 yes∗

Sub-Consistency (P5) yes10 no11 no11 no11 yes10

where scrΣ↔(E ,X ) :=
∑

a∈A scr↔(E ,X , a) (which is equal to
scrΣ↕ (E ,X ) :=

∑
t∈{1,...,τ} scr↕(E ,X , t)). We write R(E) short for

R(E ,X′) if X′ = Rvld(E). To combine the rules in a meaningful
way, we better refrain from taking their intersection:

Observation 1 (⋆). There is an election E and X′ ⊆ X(E) such
that R↕(E ,X′) ∩R↔(E ,X′) = ∅.

We combine rules as R′ ◦ R(E) = R′(E ,R(E)). For conve-
nience, for a composed rule (we call them generally max-min max-
sum rules) we list the symbols from {↕,↔,Σ} in the order in
which the corresponding rules are applied. For instance, we have
R↔,Σ,↕(E) := R↕ ◦ RΣ ◦ R↔(E) = R↕(E ,R↔,Σ(E)) with
R↔,Σ(E) := RΣ(E ,R↔(E)). The following holds.

Lemma 1 (⋆). (i) For every two rules R,R′ and election E it holds
that if X ∈ R′ ◦ R(E), then X ∈ R(E). (ii) There are rules R,R′

and an election E such that X ∈ R′ ◦ R(E) but X ̸∈ R′(E). (iii) ◦
is not commutative.

We next show how R↕, RΣ, and their compositions relate. Then,
we settle all combinations’ computational complexity.

Lemma 2 (⋆). For every election E it holds true that R↕(E) ⊇
RΣ(E) = R↕,Σ(E) = RΣ,↕(E).

Theorem 1 (⋆). (i) The problem of finding a winning committee
sequence for any combination of RΣ and R↕ is polynomial-time
solvable. (ii) The problem of finding a winning committee sequence
for any max-min max-sum rule containing R↔ is NP-hard.

We focus on R↔,Σ,↕ and R↔,↕,Σ since they are egalitarian (maxi-
mizing the minimum horizontal score first). Despite Lemma 2, they
are different (also in practice, as we see later).

Observation 2 (⋆). R↔,Σ,↕(E) ̸= R↔,↕,Σ(E) for some E .

3.2 Lex Rule

We rate our next rule Rlex as the “most egalitarian” of our rules: it not
only maximizes the minimum horizontal score, but also minimizes
the number of agents with small scores.

Rlex(E) := arg minX∈Rvld(E) ems(E ,X ) (4)

with ems(E ,X ) :=
∑Z

i=0 sat(E ,X , i) · (|A|+ 1)Z−i with Z :=∑
t∈ {1,...,τ} zt and sat(E ,X , i) := |{a ∈ A | scr↔(E ,X , a) = i}|.

Rlex maximizes lexicographically the agents’ satisfaction histogram−→
sat(E ,X ) = (sat(E ,X , 0), sat(E ,X , 1), . . . , sat(E ,X , Z)). Here,
we lexicographically order in the standard way: For two number
sequences x = (x1, . . . , xn) and y = (y1, . . . , yn), we write x ≺ y
if for the smallest index i where x and y differ we have that xi < yi.
We have the following, well-known connection.

Lemma 3 (⋆). For every election E and committee se-
quences X ,X ′ ∈ X(E) it holds true that ems(E ,X ) <

ems(E ,X ′) ⇐⇒ −→
sat(E ,X ) ≺ −→

sat(E ,X ′).

Obviously, Rlex(E) ⊆ R↔(E) for every election E and hence
by Theorem 1(ii):

Fact 1. The problem of finding a winning committee sequence
for Rlex is NP-hard.

Rlex is different from R↔,Σ,↕ and R↔,↕,Σ (and R↔dom ).

Observation 3 (⋆). (i) There is an election E such that Rlex(E) \
(R↔,Σ,↕(E) ∪ R↔,↕,Σ(E)) ̸= ∅ and (R↔,Σ,↕(E) ∩ R↔,↕,Σ(E)) \
Rlex(E) ̸= ∅. (ii) We have Rlex(E) ⊆ R↔dom(E) for every elec-
tion E . (iii) There exists E ′ such that R↔dom(E ′) \ Rlex(E ′) ̸= ∅.

3.3 Greedy Rule

Since finding a winning committee sequence for our three preceding
egalitarian rules is NP-hard, we present a polynomial-time greedy rule:
On each level t, the initial solution selects all candidates receiving
positive utility by at least one agent if there are exactly kt many of
them, and the empty set otherwise. Then the rule repeats the following:
Among all levels where selecting a candidate is possible (i.e., the
current committee on level t is smaller than kt) add to the committee
of the respective level one of the candidates not yet selected whose
decrease of the ems score of the current solution is largest.

Definition 2. Rule Rgreedy is formally defined as follows.
1. For each t ∈ {1, . . . , τ}, let Cn

t := {c ∈ Ct | ut(A, c) > 0}
and kt := min{kt, |Cn

t |}. Start with X = (X1, . . . , Xτ ), where
Xt = Cn

t if |Cn
t | = kt, else Xt = ∅, for each t ∈ {1, . . . , τ}.

2. Let T ′ := {t ∈ {1, . . . , τ} | |Xt| < kt}. If |T ′| = 0, stop.
3. Pick some (t′, c′) ∈ arg min(t,c)∈S ems(E ,X ∪t {c}),

where S = {(t, c) | t ∈ T ′, c ∈ Cn
t \Xt} and X ∪t {c} :=

(X1, . . . , Xt ∪ {c}, . . . , Xτ ). Add this c′ to Xt′ . Go to step 2.

Definition 2 also describes how to find a committee sequence win-
ning for Rgreedy in polynomial time. Hence:

Fact 2. The problem of finding a winning committee sequence
for Rgreedy is polynomial-time solvable.

3.4 Approval Rule

Our last rule selects committees in a very obvious way: indepen-
dently for each level, select iteratively the candidate that receives the
hightest utility. This is clearly not an egalitarian rule. Let P∗

t (E) :=
arg maxX′⊆Ct: |X′|≤kt

ut(A,X ′) and

Rapp(E) := P∗
1 (E)× · · · × P∗

τ (E). (5)



We have already seen the winning set of Rapp: For every election E
it holds true that Rapp(E) = RΣ(E). The following is thus also
immediate (see also Theorem 1(i)):

Fact 3. The problem of finding a winning committee sequence
for Rapp is polynomial-time solvable.

Although Rgreedy in each step treats the least-satisfied agent that
still can improve, its outcome could be “less” egalitarian than one by
our non-egalitarian rule Rapp.

Observation 4 (⋆). There is an election E and two commit-
tee sequences X ∈ Rapp(E) and X ′ ∈ Rgreedy(E) such that
scrmin

↔ (E ,X ) > scrmin
↔ (E ,X ′).

4 Central Properties
In this section, we discuss the fingerprints of our rules on the selected
central properties (see Table 1 for an overview). Exemplarily, we
provide here some selected proofs. We defer the complete theoretical
analysis (with many more properties) to a full version of the paper.

We introduce, explain, and define our main properties against which
we test our rules. We find the selected properties particularly well-
motivated for the goal of finding egalitarian committee sequences.
Moreover, no two properties are satisfied by the same set of rules and
we can distinguish each pair of rules with one of the properties.

Pareto efficiency. The first property is based on the concept of
domination as defined in Section 2. When aiming for satisfaction
of individual (in particular, least satisfied) agents, providing a ↔-
dominated committee sequence is a bad idea. Thus, we are interested
in rules that are ↔-Pareto efficient as defined next.

Property 1 (↔-Pareto efficiency). A rule satisfies ↔-Pareto effi-
ciency if it outputs no committee sequence which is ↔-dominated by
a valid committee sequence.

By Observation 3(ii), Rlex satisfies ↔-Pareto efficiency (P1). For
the max-min max-sum rules we have the following.

Observation 5. Every rule composed of R↔, R↕, and RΣ con-
taining RΣ satisfies ↔-Pareto efficiency (P1) except for R↔,↕,Σ
and R↕,↔,Σ (they violate ↔-Pareto efficiency (P1)).

Proof. For first statement, note that every addressed composition
contains RΣ as first or second rule. By definition, we have that if X
↔-dominates X ′, then scrΣ↔(E ,X ) > scrΣ↔(E ,X ′). Hence, the state-
ment follows from the definition of RΣ together with Lemma 2.

For the second statement, see Figure 1(i).3

It follows that Rapp satisfies ↔-Pareto efficiency (P1). This is not
the case for Rgreedy.

Observation 6 (Proof by Figure 1(ii)). Rgreedy violates ↔-Pareto
efficiency (P1).

Superadditivity. The next two properties capture situations where
two elections are “merged” in two different ways. First, we model
situations (united) where two disjoint groups of agents vote over the
same levels. Second, we model situations (concatenated) where the
same group of agents votes over two different disjoint sets of levels. In
both cases, our property is based on the idea that in a merged election,
the satisfaction of the least satisfied agent(s) shall not get worse.

3 All our counter examples use {0, 1}-utilities which we represent as nomina-
tions ut : A → Ct∪{∅}, t ∈ {1, . . . , τ}, for the sake of readability, where
in each level each agent nominates either none or her favorite candidate.

(i)
a1: a c −
a2: a c f

a3: − c e

a4: − c e

a5: b d −
a6: − d f

(ii)
a1: a c e

a2: a − e

a3: b − f

a4: − c e

a5: − d f

Figure 1. Counterexample to ↔-Pareto efficiency (P1) for (i) R↔,↕,Σ
with κ = (1, 1, 1). Note that X = ({a}, {d}, {e}) (blue circle) and

X ′ = ({b}, {c}, {f}) (green square) are the only valid committee sequences
with minimum horizontal score of one (clearly, scrmin

↔ (E,X ) ≤ 1 for every
valid X ). Since 2 = scrmin

↕ (E,X ) > scrmin
↕ (E,X ′) = 1, each of R↔,↕,Σ

and R↕,↔,Σ selects X . However, X ′ ↔-dominates X . (ii) Rgreedy

with κ = (1, 1, 1). Rgreedy selects ({b}, {d}, {e}) (green square), which is
↔-dominated by ({a}, {c}, {f}) (blue circle).

Property 2 (United h-Superadditive). Rule R is united h-
superadditive if for any two elections E1 = (A1, C1, U1, κ1)
and E2 = (A2, C2, U2, κ2) over the same number of levels but dis-
joint agent sets we have that for all X1 ∈ R(E1),X2 ∈ R(E2) there
is an X ∈ R(E) with E = (A1 ∪ A2, C1 ∪ C2, U1 ∪ U2, κ1 + κ2)
such that scrmin

↔ (E ,X ) ≥ scrmin
↔ (E ,X1 ∪ X2).

Property 3 (Concatenated h-Superadditive). Rule R is concate-
nated h-superadditive if for every two elections E1 = (A, C, U, κ)
and E2 = (A, C′, U ′, κ′) we have that for all X1 ∈ R(E1),X2 ∈
R(E2) there is an X ∈ R(E) with E = (A, C ◦ C′, U ◦U ′, κ ◦κ′) so
that scrmin

↔ (E ,X ) ≥ scrmin
↔ (E ,X1 ◦ X2).

Since Rlex, R↔,↕,Σ, and R↔,Σ,↕ maximize the minimum horizon-
tal score, they trivially satisfy United h-Superadditive (P2) and Con-
catenated h-Superadditive (P3). Rapp also trivially satisfies Concate-
nated h-Superadditive (P3) since the concatenation of two winning
committee sequences is again winning. Less obvious is the situation
for Rapp regarding United h-Superadditive (P2) and for Rgreedy.

Observation 7 (Proof by Figure 2). Rgreedy violates United h-
Superadditive (P2) and Concatenated h-Superadditive (P3). Rapp

violates United h-Superadditive (P2).

Independent Groups. While it is desired that additional levels or
agents will influence the outcome (in order to maximize satisfaction
of the least satisfied agents), the next property basically says that
when different agent groups have disjoint interests, then the outcome
should be the same as if each agent group attended a separate election.

Property 4 (Independent Groups). Rule R satisfies indepen-
dent groups if for every E = (A, C = (C1, . . . , Cτ ), U =
(u1, . . . , uτ ), κ = (k1, . . . , kτ )) with A = A1 ⊎ · · · ⊎ Ar and 1 ≤
t1 < t2 < · · · < tr−1 < τ = tr such that among all lev-
els t ∈ {ts−1+1, . . . , ts} =: Ts, where t0 = 0, exactly the group As

has positive utilities, it holds true that R(E) = R(E1)×· · ·×R(Er),
where Es = (As, (Ct)t∈Ts , (ut)t∈Ts , (kt)t∈Ts), s ∈ {1, . . . , r},
are the corresponding elections.

Rapp trivially satisfies Independent Groups (P4) since it selects
committees for each level independently. Intuitively, ems also opti-
mizes each group independently and, indeed, we have the following.

Observation 8. Each of (i) Rlex and (ii) Rgreedy satisfies Indepen-
dent Groups (P4).

Proof. (i) Let X ∈ Rlex(E). Let X =
⋃r

s=1 Xs, where Xs has
only non-empty committees on Ts, and let X̄s be Xs restricted to the



(i)
a1: a c e g

a2: a c f h

a3: b d e −

(ii)
a1: a d

a2: a d

a3: a e

a4: b e

a′
1: b f

a′
2: c −

(iii)
a1: a d

a2: a d

a3: a e

a4: b e

a5: b e

a′
1: c f

Figure 2. Counterexample to (i) Concatenated h-Superadditive (P3)
for Rgreedy with κ = (1, . . . , 1). After concatenation (along the dashed
line), Rgreedy selects the committee ({a}, {c}, {e}, {h}) (green square).

This leaves a3 with a horizontal score of only one, although the concatenation
of individual winners (blue circle) provides each agent with a horizontal score
of two. (ii) United h-Superadditive (P2) for Rgreedy with E1 (top) and E2
(bottom), separated by a dashed line, with κ = (1, 1) each. Note that in the
united election with κ′ = (2, 2), Rgreedy selects a first, then b, and then d

and e, leaving agent a′2 with score zero (green square). However,
({a}, {e}) ∈ Rgreedy(E1) together with ({c}, {f}) ∈ Rgreedy(E2)

satisfies every agent at least once (blue circle). (iii) United
h-Superadditive (P2) for Rapp with E1 (top) and E2 (bottom), separated by a

dashed line, with κ = (1, 1) each. Note that Rapp(E1) = ({a}, {e})
and Rapp(E2) = ({c}, {f}), leaving each agent satisfied at least once (blue

circle). However, in the united election E with κ′ = (2, 2),
Rapp(E) = ({a, b}, {d, e}) (green square), leaving agent a′1 unsatisfied.

levels in Ts. For every A′ ⊆ A and committee sequence X ′ ∈
Rvld(E), let sat(X ′, A′, i) := |{a ∈ A′ | scr↔(E ,X ′, a) =

i}| and
−→
sat(X ′, A′) := (sat(X ′, A′, 0), . . . , sat(X ′, A′, Z)). We

have
−→
sat(X , A) =

∑r
s=1

−→
sat(Xs, As). Suppose there is an X̄ ′

s ∈
Rlex(Es) with ems(Es, X̄ ′

s) < ems(Es, X̄s), which is equivalent
to
−→
sat(Es, X̄ ′

s) ≺
−→
sat(Es, X̄s) (see Lemma 3). The latter is equivalent

to
−→
sat(X ′

s, As) ≺ −→
sat(Xs, As), where X ′

s is X̄ ′
s with

∑s−1
q=1 |Tq| pre-

ceding and
∑r

q=s+1 |Tq| succeeding empty committees. Thus, X ′,

where we replace Xs with X ′
s, has

−→
sat(X ′, A) ≺ −→

sat(X , A) and
hence ems(E ,X ′) < ems(E ,X ) (see Lemma 3), a contradiction
to X ∈ Rlex(E). The other directions goes analogously.

The proof of (ii) is deferred to the full version.

The situation is different for R↔,Σ,↕ and R↔,↕,Σ: a group with
small minimum horizontal score can lead to optimizing the sum of
scores for another group among committees with minimum horizontal
score lower than what the group could achieve.

Observation 9 (Proof by Figure 3). Each of R↔,Σ,↕ and R↔,↕,Σ
violates Independent Groups (P4).

a1: x − − − −
a2: − a a a a

a3: − b b b b

a4: − b b b b

Figure 3. Counterexamples for R↔,Σ,↕ (also works for R↔,↕,Σ) and
Independent Groups (P4) with κ = (1, . . . , 1) and the two elections E1

and E2 indicated by dashed boxes. We have that R↔,Σ,↕(E1) = {x} and
R↔,Σ,↕(E2) selects each of candidate a and b exactly twice (blue circle).

R↔,Σ,↕(E), however, selects a only once (green square).

Consistency. The next property was also adapted by Boehmer et al.
[3] for “line-up elections” (also appears in [15]). If we have two agent
groups interested in the same levels and separate elections for them
share a common solution, then this solution should also be a solution
for the elections’ union. This is practical since in this case merging

two groups with a common solution then makes the recomputation of
a winning committee sequence optional.

Property 5 (Sub-Consistency). Rule R satisfies sub-consistency if
for every two elections E1 = (A1, C, U1, κ) and E2 = (A2, C, U2, κ)
over the same candidate sequence C, number of levels, and committee
bounds, but disjoint agent sets A1 and A2, it holds that if M :=
R(E1) ∩R(E2) ̸= ∅, then M ⊆ R(A1 ∪A2, C, U1 ∪ U2, κ).

Rlex and Rapp satisfy the property as the only two of the five rules.

Observation 10. Each of (i) Rlex and (ii) Rapp satisfies Sub-
Consistency (P5).

Proof. (i): Let B ∈ {A1, A2, A} with A = A1 ∪ A2 and
emsB(X ) :=

∑Z
i=0 |{a ∈ B | scr↔(E ,X , a) = i}| · (|A|+ 1)Z−i

with E = (A, C, U1 ∪ U2, κ). It holds that emsA(X ) = ems(E ,X ).
We use the following: ems(Ei,X1) ≤ ems(Ei,X2) ⇐⇒
emsAi(X1) ≤ emsAi(X2) ∀i ∈ {1, 2} (∗). We show that
M ⊆ Rlex(E). Let XM ∈ M . Then minX emsA(X ) =
minX (emsA1(X ) + emsA2(X )) ≥ minX emsA1(X ) +
minX emsA2(X )

(∗)
= emsA1(XM ) + emsA2(XM ) = emsA(XM )

and thus X ∈ Rlex(E).
(ii): Let Ei = (Ai, C, Ui = (ui,1, . . . , ui,τ ), κ) for each i ∈ {1, 2}

and let E = (A1 ∪ A2,X , U1 ∪ U2 = (u1, . . . , uτ ), κ). Let X =
(X1, . . . , Xτ ) ∈ M . Assume that X ̸∈ Rapp(E). Then there is
a t ∈ {1, . . . , τ} such that Xt ̸∈ P ∗

t (E). Let X ′
t ∈ P ∗

t (E). We
have that u1,t(A,Xt) + u2,t(A,Xt) < ut(A,X ′

t) = u1,t(A,X ′
t) +

u2,t(A,X ′
t), and thus u1,t(A,Xt) < u1,t(A,X ′

t) or u2,t(A,Xt) <
u2,t(A,X ′

t), which contradicts the choice of X .

Observation 11 (Proof by Figure 4). Each of R↔,Σ,↕, R↔,↕,Σ,
and Rgreedy violates Sub-Consistency (P5).

(i)
a1: a c

a2: b a

a3: b b

a4: a b

a′
1: b b

a′
2: a a

a′
3: a a

a′
4: a a

(ii)
a1: a c e

a2: a c f

a′
1: b c f

a′
2: a d e

a′
3: a − e

Figure 4. Counterexample to Sub-Consistency (P5) for (i) R↔,Σ,↕
and R↔,↕,Σ with κ = (1, 1). We have that ({a}, {b}) (blue circle) is the

only common winner for E1 (left) and E2 (right). For their union, note
that ({a}, {a}) (green square) is the only winner. (ii) Rgreedy

with κ = (1, 1, 1). A common winner is ({a}, {c}, {f}) (blue circle):
For E2 (bottom), selecting first a, then f , and then c is possible. For the union,

the only winner is ({a}, {c}, {e}) (green square).

5 Experiments
We analyze the behavior of Rlex, R↔,Σ,↕, R↔,↕,Σ, Rgreedy, and
Rapp when applied to experimental data, which is discussed in Sec-
tion 5.1, using the experimental setup discussed in Section 5.2. Based
on this, multiple aspects of the rules’ behavior are discussed in subse-
quent sections: The values of different scores of the winning commit-
tee sequences determined by different rules (Section 5.3); the runtimes
of the rules when applied to the experimental data (Section 5.4); and
the proportion of experimental elections for which a given rule sat-
isfies a given property from Section 4 (Section 5.5). We consider
κ = (1, . . . , 1), since it is the simplest non-trivial case (cf. [8]) and
the qualitative results regarding the scores only change a little overall
for other κ that we have tested.
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Figure 5. The dimensions of the experimental data, where the color of each
point represents the average τ of all instances with the given m and n.

5.1 Experimental Data

To the best of our knowledge, there are no (real-life) datasets for
electing sequences of committees. Thus, we transformed preference
datasets from PrefLib [17], where preferences are represented as
strict (possibly incomplete) linear orders, into nomination profiles4

as follows. Based on the respective metadata, we chose levels and
assigned the candidates accordingly (a candidate may be assigned
to multiple levels). On each level, each agent nominates its most
preferred candidate if any candidate on this level is in the agent’s
preference order, otherwise it nominates none. Using this approach,
we have created a total of 8870 sequential elections with the following
additional steps: We removed candidates not nominated by any agent
and levels on which all agents nominate the same candidate. After
this, we removed instances with at most one level or three candidates.
Figure 5 gives an overview of the number of agents, levels, and
candidates in this experimental data.

5.2 Experimental Setup

The sequential election rules have been implemented in Python to ana-
lyze their behavior. Additionally, Rgreedy has also been implemented
in C++ to compute all winning committee sequences in Section 5.5.
While the implementations of Rgreedy and Rapp follow directly from
their definitions in Section 3.3 and Section 3.4, respectively, the other
rules are defined as constraint optimization problems (CPs) and im-
plemented as well as solved using the CP-SAT solver from Google
OR-Tools (version 9.8.3296 with default parameters).

Outside Section 5.5, we only consider one winning committee se-
quence, even if there is more than one, for every rule and election. For
Rlex, R↔,↕,Σ, and R↔,Σ,↕, the first winning committee sequence
found by the CP-SAT solver is considered. For Rgreedy and Rapp,
the first possible candidate in the candidate order of the underlying
PrefLib dataset is chosen.

5.3 The Scores

One interesting aspect is how well rules designed to optimize one
set of scores behave with respect to other scores. Table 2 shows a
comparison of the scores of the winning committee sequences of our
rules on the experimental data.

4 Experiments with more complex utilities are ongoing work, but require very
extensive and time-consuming systematic analysis. Preliminary findings
with Borda-like utilities support all main conclusions made here.

Table 2. The first value is the percentage of the experimental data for which
a rule achieves the optimal score. The value in parentheses is the percentage
of the optimal score that a rule achieves on average, with one exception: For
ems, the percentage of the reciprocal proportion is shown, as ems is the only

score to be minimized. If a rule is optimal with respect to a score, then the
corresponding cell contains 100. The percentages are rounded naturally.

Rule ems scrmin
↔ scrmin

↕ scrΣ↔

Rlex 100 100 27 (60) 13 (93)

Rgreedy 61 (86) 90 (99) 27 (60) 14 (93)

R↔,Σ,↕ 45 (83) 100 38 (69) 23 (95)

R↔,↕,Σ 43 (82) 100 39 (72) 23 (95)

Rapp 10 (20) 19 (73) 100 100
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Figure 6. A comparison of R↔,↕,Σ and R↔,Σ,↕, where each point
represents one instance from the experimental data. On the left (right), the x

value represents the scrΣ↔ score (scrmin
↕ score) achieved by R↔,Σ,↕

(R↔,↕,Σ) and the y value the same score achieved by R↔,↕,Σ (R↔,Σ,↕).
If a point is on the blue line, the scores reached by the two rules are the same.

Comparing R↔,↕,Σ and R↔,Σ,↕. Besides satisfying the same
properties from Section 4 apart from one, R↔,↕,Σ and R↔,Σ,↕ be-
have similarly with respect to the optimal score on average. How-
ever, these two rules achieve different scrΣ↔ and scrmin

↕ scores for
around 11% of the instances and can differ significantly (see Figure 6).
While R↔,↕,Σ reaches very similar scrΣ↔ scores to R↔,Σ,↕ with very
few outliers, there are significant outliers regarding the scrmin

↕ score:
There are instances for which R↔,Σ,↕ achieves only around 3% of
the scrmin

↕ score achieved by R↔,↕,Σ. Nevertheless, both rules reach
better scrmin

↕ scores than Rlex and Rgreedy on average.
Table 2 also shows that, interestingly, the optimal ems score is 82%

and 83% of the score reached by R↔,↕,Σ and R↔,Σ,↕ on average,
respectively, despite neither rule optimizing ems .

Comparing Rlex, Rgreedy, and Rapp. The scrmin
↔ scores of Rapp,

Rgreedy, and Rlex are compared in the scatter plot on the left of Fig-
ure 7: Rgreedy achieves 99% of the optimal scrmin

↔ score on average,
has no severe outliers, and reaches the exact optimal scrmin

↔ score for
90% of the experimental data. Rapp exhibits severe outliers regarding
the scrmin

↔ score, achieving 0% of the optimal score for the worst
outliers. With respect to the average ems score, Rgreedy outperforms
every other rule (except Rlex), achieving an ems score that is only
about 1.2 times as large as the optimum on average, as opposed to,
e.g., five times in the case of Rapp. Similarly, Rgreedy reaches the
optimal score for about 61% of the experimental data, while all other
rules (except Rlex) achieve it for less than 50% of the data, with
Rapp being the worst with only 10%. This demonstrates that Rgreedy

is a far better choice than Rapp with respect to scrmin
↔ and ems.

However, Rapp does not have as many outliers regarding the scrmin
↔

score as Rlex and Rgreedy regarding the scrmin
↕ score, as shown by
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Figure 8. The runtimes of the rules for finding a winning committee
sequence for the experimental data.

the right-hand scatter plot in Figure 7: On average, both Rgreedy

and Rlex reach only around 60% of the optimal scrmin
↕ score, which

shows the costs of optimizing scrmin
↔ and ems.

5.4 The Runtimes

Figure 8 shows the rules’ runtimes for finding one winning committee
sequence. For each rule and instance, the runtimes of three separate
computations on an Apple MacBook Pro (Apple M2 Max, 64GB
RAM, macOS Sonoma 14.4.1, Python 3.11) were averaged.

While all rules need less than 1 s for the vast majority of the ex-
perimental data, the results still reflect the fact that determining a
winning committee sequence with Rlex, R↔,↕,Σ, or R↔,Σ,↕ is NP-
hard, while it is in P for Rapp and Rgreedy. The rules R↔,↕,Σ and
R↔,Σ,↕ need at most around 51 s and 78 s, respectively, while Rlex

has the worst runtimes and needs around 3.2 h in the worst case
(n = 993, τ = 40, m = 136). This demonstrates the importance of
a good heuristic solution.

5.5 Investigating the Properties

Even if a rule violates a given property in general, the conditions of
that property can be satisfied by the rule for a specific instance. We
therefore investigate how often our rules satisfy the conditions of a
given property for the experimental data.

To avoid excessive runtimes, for each property we discard a specific
instance, its variants, or a pair of two instances in any of the following
two cases: (1) one of the rules that violate the property determines
at least 30 winning committee sequences or (2) determining at most
30 winning committee sequences of Rgreedy takes more than 10 s

Table 3. The (naturally rounded) proportion of the investigated (pairs of)
instances for which a rule satisfies the conditions of the given property. If a

rule satisfies a property in general, the corresponding cell contains a ✓.

Property Rlex R↔,Σ,↕ R↔,↕,Σ Rgreedy Rapp

P1 ✓ ✓ 99.9 91.8 ✓

P2 ✓ ✓ ✓ 98.6 84.7

P3 ✓ ✓ ✓ 98.0 ✓

P4 ✓ 11.9 11.5 ✓ ✓

P5 ✓ 98.6 98.4 98.6 ✓

using the C++ program and hardware mentioned in Sections 5.2 and
5.4, respectively. Under this restriction, relatively few instances are
discarded and some properties are even tested on all our instances.
Note that for some other properties we have further particularities or
restrictions (e.g., upper bounds on n and m) to reduce runtimes.

Table 3 gives an overview of the results, in which the percentages
are based on all instances or combinations thereof that are not dis-
carded. For Independent Groups (P4), the table only displays the
results based on instances with at least two independent groups, for
Sub-Consistency (P5), we only consider instance pairs with at least
one common winning committee sequence.

Our results show that R↔,↕,Σ violates the condition of ↔-Pareto
efficiency (P1) very rarely for the experimental data. On the other
hand, both R↔,↕,Σ and R↔,Σ,↕ violate the conditions of Independent
Groups (P4) for around 88% of the instances with more than one
independent group, so that R↔,↕,Σ and R↔,Σ,↕ do not behave as one
would expect from an egalitarian rule in such situations.

Rgreedy satisfies the conditions of United h-Superadditive (P2)—
which is the only central property violated by Rapp—for 98.6% of
the instances, in contrast to 84.7% in the case of Rapp. In addition,
for each property, Rgreedy satisfies the corresponding condition for
at least 91.8% of the instances, which fits the observation from Sec-
tion 5.3 that Rgreedy seems to be a good heuristic for Rlex.

6 Epilogue
We introduced and adapted new properties and rules for (computing)
egalitarian committee sequences as well as tested them against each
other, both theoretically and experimentally. Our work promotes Rlex

for egalitarian committee sequences. While computationally demand-
ing, Rlex fulfills many desirable properties. Many of those are violated
by Rgreedy, which, however, performs well in our experiments—both
regarding runtime and solution quality. Thus, Rgreedy qualifies it-
self as a good heuristic for Rlex, in particular on larger instances or
when (computing) time is limited. If one accepts a smaller ems score
for a higher sum of scores or a higher minimum vertical score, then
R↔,Σ,↕ and R↔,↕,Σ can be good choices.

Our work constitutes the first axiomatic and experimental study on
egalitarian committee sequences and hence paves the way for future
work in many directions. Interesting further properties to formulate or
adapt include those connected to “strategyproofness” (cf. [15]). Fu-
ture work can add further properties and rules not only for committee
sequences that are egalitarian, but also for, e.g., equitable committee
sequences (where every two agents score equally). Characterizations
of our rules (as we have as preliminary result for Rlex) and impossibil-
ity statements are also worth to study. Regarding data and experiments,
since most of our data is rather artificial, more real-world data is to
collect. Also comparing winners between non-sequential elections
and their “sequentialized” ones may be of interest.
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