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Abstract. Participatory budgeting (PB) is a democratic process for
allocating funds to projects based on the votes of members of the
community. PB outcomes are commonly evaluated for how they re-
flect voters’ preferences (e.g., social welfare), and the extent to which
they are fair (e.g., proportionality). Due to practical and computa-
tional reasons, voters are usually asked to report their preferences
over projects separately, possibly neglecting important dependencies
among projects which cause the outcome no longer being propor-
tional, in addition to achieving lower satisfaction.

This work is the first to suggest a polynomial-time aggregation
method capable of guaranteeing proportional outcomes under substi-
tution dependencies. The method is based on the Method of Equal
Shares, and we further provide an FPT variation that can guaran-
tee a more relaxed notion of proportionality for any type of depen-
dency. Through simulations, we demonstrate that these aggregation
methods achieve, on average, at least as much social welfare as their
counterparts that ignore the dependencies.

1 Introduction

Participatory budgeting (PB) is gaining increased attention from both
researchers and practitioners and is actively in use in cities around the
world [24, 1]. This process typically includes several steps. In the
first step, citizens suggest and discuss different projects, followed by
a stage of shortlisting [23] to get a short list of feasible projects with
their cost estimations. Next, citizens vote on which of the projects
they would like to be funded. Different input formats exist that allow
voters to express their preferences [4, 11] over projects, such as ap-
proval voting, knapsack ranking and additive utility (specified later
on). Finally, the votes are aggregated by a mechanism that selects a
subset of projects to fund [25, 19, 21].

In assessing aggregation methods, various criteria are employed,
among which the notion of proportionality. Proportionality aims to
ensure that a group of voters with similar preferences receives a satis-
factory level of welfare. One prominent polynomial-time aggregation
method, the Method of Equal Shares (ES) [21], provides assurance
that its outcome will satisfy the proportionality notion of Extended
Justified Representation up to 1 project (EJR-1), under the assump-
tion that voters’ utilities over projects are additive.

In the real world, voters’ preferences may exhibit complex re-
lationships between projects. For example, the utility from one
project might depend on whether some other project is funded or not

[17, 18, 3, 15]. Consider for example a city where there are 4 different
suggestions to build a large parking lot in different places, as well as
two unrelated projects (say, a playground and a library). The budget
is sufficient for only four projects. There is a severe parking problem,
so most citizens will assign higher utility to parking lots than to the
other projects (or rank parking lots higher than other projects). As
a result all 4 parking lots are likely to be funded and consume the
entire budget, even if one or two parking lots are sufficient to solve
most of the parking shortage, and the remaining budget would be put
to a better use by funding the other projects. This problem occurs
since common mechanisms ignore the fact that the four parking lots
are substitutes.

This example directly shows how ignoring such dependencies may
lead to lower welfare. Furthermore, outcomes that satisfy EJR-1 are
no longer guaranteed to exist when taking into account interactions.
We will explain this in details in Section 4.2.

Our contribution.

• We provide two extensions of ES: Interaction Equal Shares (IES)
that chooses the next project according to its marginal utility; and
Partition IES (PIES) that considers subsets of interacting projects
at each iteration.

• We show that even with few substitute projects, it is no longer
guaranteed that an outcome satisfying EJR-1 exists. Therefore,
we extend the notion of EJR-1 to consider arbitrary interactions
between projects, namely EJR with Interactions up to 1 project
(EJRI-1).

• We prove that IES always returns an EJRI-1 outcome under substi-
tutes relation between projects; and that PIES holds a more relaxed
notion of proportionality for any type of interactions.

• We show through simulations that IES and PIES achieve at least
as high welfare on average as ES.

• Our simulations are performed by extending the open source li-
brary pabutools [16] to support aggregation with interaction be-
tween projects. This code will be made public for future research.

1.1 Related Work

Evaluation of aggregation methods. Past work in PB use different
methods in order to evaluate the voting rules. One method for evalua-
tion which received a lot of attention is proportionality, having many
notions which are surveyed by Rey and Maly [22]. In our work, we



will focus on the notion of Extended Justified Representation (EJR)
which will be defined in Section 4.

Additional popular methods for evaluation include social welfare
to evaluate mechanisms, such as Goel et al. [14], which shows that
when using the knapsack input format (1/0 additive utilities, i.e., ap-
proval), it is possible to achieve an outcome that maximizes social
welfare. Jain et al. [17] consider special cases where it is possible to
find a polynomial time algorithm that maximizes the social welfare
given interactions between projects.

There is a wide range in the literature on PB that talks about the
tradeoff between welfare and proportionality. Fairstein et al. [10]
studied the tradeoff between welfare and representation while check-
ing how requiring proportionality affects them, showing that this re-
quirement can lower the maximal achievable welfare. In addition,
Michorzewski et al. [20] tests the relation between fairness (propor-
tionality) and welfare, however, in the settings where projects are
divisible and not required to be funded entirely. Stronger positive re-
sults can be seen for projects with unit cost [6].

Projects Interaction in PB. The literature suggests many different
ways to represent voter preferences over a discrete set of projects
(i.e., input format), such as approval voting [14, 12], knapsack voting
[14, 13], ranking [2, 4], reporting utilities [21] for each of the projects
and more. However, all of those methods ignore interactions among
projects (such as substitution). There are several works which tackle
this issue: Jain et al. [17, 18] describe an interaction structure based
on a combination of project partitioning and approval voting. This is
followed by complexity analysis for which cases it is possible to find
the optimal outcome in terms of welfare. We will adopt this model
for our paper.

As we described, there is a variety in the literature that consider
the settings where there are project interactions. However, there is a
lack of literature that consider proportionality in these settings. The
only positive result we are aware of is regarding Fully Justified Rep-
resentation (FJR). While their paper focuses on additive utilities, Pe-
ters et al. [21] mention that the definition of FJR allows for arbitrary
interactions, and that the Greedy Cohesive Rule (which has exponen-
tial runtime) is guaranteed to find an FJR outcome (in particular one
must exist).

Goyal et al. [15] also assume some partition over the projects with
specific types of interactions. For this structure they suggested a vot-
ing rule which they show that under some constraints is strategyproof
and finish with a complexity analysis for finding the optimal outcome
in terms of welfare under their model. In comparison, Baumeister
et al. [3] suggested model have two main differences, first, they work
in multi-winner settings and second, they do not assume a partition
over the projects; instead, each voter has their own partitions. They
focus on a specific structure of project interaction (which can be con-
sidered as a special case of the work of Jain et al. [17]) and perform
an axiomatic analysis on different voting rules for this model. Finally,
Durand and Pascual [8] Considers project synergies during aggrega-
tion, highlighting important properties. However, finding the optimal
outcome is NP-hard, and even approximations limiting synergy size
can be impractically slow as size increases

Interactions Outside of PB. It worth mentioning that the subject
of non-additive, or ‘combinatorial’ utilities spread much further in
the literature beyond participatory budgeting. The challenges that we
described in the introduction also exists in other areas of economics.
For example, in combinatorial auctions under different utility func-
tions Blumrosen and Nisan [5], and in fair allocation, where Chaud-
hury et al. [7] study the problem of allocating indivisible goods under

subadditive valuations for the items. Decreasing marginal gain is also
a common assumption in continuous budgeting problems [9, 26].

2 Preliminaries
The model is based on the project interaction model described by
Jain et al. [17]. We start by defining the Participatory budgeting in-
stance as an election tuple (P, cost, Z, L, V, F ), where:

• P = {p1, . . . , pm} is a set of m projects which are considered.
• cost: P → R+ is a function specifying the cost of each project
p ∈ P . The cost for subset of alternatives T ⊆ P is cost(T ) =∑
p∈T cost(p).

• L ∈ R+ is the total budget the voters have in order to fund the
selected projects.

• A partition Z = {z1, . . . , z|Z|} of interaction sets of projects,
where ∪i∈[|Z|]zi = P and ∀i, j ∈ [|Z|]; zi ∩ zj = ∅.

The preferences elicited from voters are composed of two parts:

• Each of the n voters V = {v1, . . . , vn} submits an approval bal-
lot, where vi specifies the set of projects T ⊆ P approved by voter
i.

• To convey the utility they derive from the approved projects, vot-
ers define a set of interaction functions Fi = {fiz1 , . . . , fiz|Z|},
where ∀z ∈ Z; fiz : Z+ → R+.

We mark by fiz(k) the utility that voter i gets from an interaction
set z in which there are exactly k projects approved by the voter that
were chosen in the outcome W . Formally, the utility that voter i gets
from outcome W is: ui(W ) :=

∑
z∈Z fiz(|z ∩ vi ∩W |), and the

marginal utility that a voter i gets from adding p to subset of projects
T ⊂ P is denoted by ui(p|T ) := ui(T ∪ {p})− ui(T ).

Throughout the paper, we will consider only interaction functions
that satisfy the following:

1. f(0) = 0: no utility is received if the voter does not approve any
project from a part z ∈ Z that is funded.

2. ∀k > k′, f(k) ≥ f(k′): the interaction function is non-
decreasing.

In addition to the general model, we will look at a family of in-
teraction functions that describe substitution between projects in the
same partition, 1 i.e. f(k + 1)− f(k) ≤ f(k)− f(k − 1).

Note that the way that the interaction function is defined, it de-
pends only on how many projects were funded from the same group
and is indifferent about which project is funded.

Finally, given a PB instance, an aggregation method will return a
feasible outcome, i.e. W ⊆ P with cost(W ) ≤ L.

If we go back to the Example from Section 1, we have a partition
where all parking lots are in the same set z1 and the other projects are
each in a separate set. A voter that wants at most 2 parking lots might
express his interaction function as fiz1(k) = (1, 2, 2, 2) i.e. f equal
to 1 for k = 1 and 2 for k ∈ [2, 4]. If one wants to simplify the voting
process, they can provide default interaction functions, allowing the
voters the option to override it, or only submit an approval ballot.

3 Aggregation Algorithm
Our starting point is the Method of Equal Shares (ES) algorithm in-
troduced by Peters et al. [21]. ES is an iterative rule, which starts with

1 We do note that some rules, such as some Thiele methods, can be thought of
as maximizing welfare under the assumption that all projects are substitutes
to some extent.



“allocating" each voter an equal share of the budget L
|V | , initializes

an empty outcome W = ∅; then it sequentially adds projects to W .
At each step, to choose some project p ∈ P \W , each voter needs
to pay an amount that is proportional to her utility from the project,
but no more than her remaining budget (note that with approval util-
ities this means only agents that approve the project pay). The total
payment should cover the cost of the project.

Formally, let bi(t) be the amount of money that voter i is left
with just before iteration t. We say that some project p ∈ P , is q-
affordable if ∃q ∈ R+ such that∑

i∈V

min(bi(t), ui(p) · q) ≥ cost(p) (1)

Where ui(p) is the utility of voter i for project p. If project p is
q-affordable, we will denote by payi(p) := min(bi(t), ui(p) · q),
how much voter i needs to pay for project p if it is funded.

If no candidate project is q-affordable for any q, ES terminates
and returns W . Otherwise it selects project p(t) /∈ W that is q-
affordable for a minimum q, where individual payments are given
by payi(p(t)). We then update the remaining budget to bi(t+ 1) :=
bi(t)− payi(p(t)).

We emphasize that ES assumes additive utilities and does not take
into account project interactions (recall the parking lots example
from the introduction).

Aggregation with Interactions. We will now extend ES to Inter-
action Equal Shares (IES). During the run of IES, there are no fixed
project utilities, but rather marginal utilities that are updated with ev-
ery iteration: in each iteration where the set of projects B ⊆ P was
chosen so far, we calculate the qValues (see Eq. (1)) using ui(p|B)
instead of ui(p). Note that both ES and IES run in polynomial time.

The following example shows how each of the mechanisms work
on an instance with substitutes.

Example 1. Consider the PB scenario where V = {v1, v2}, P =
{a, b, c, d, e}. In the following table, the first line describes the inter-
action functions for each interaction set (both voters have the same
functions), followed by the approval sets of each voter.

{a} {b, e} {c, d}
f (1) (1, 1.2) (1, 1.2)
v1 {a} {b} {c, d}
v2 {a} {b, e} {c}

The budget L = 2 and cost(a) = 11
10
, cost(b) = cost(c) =

1, cost(d) = cost(e) = 1
3

. In the case that ES is used, it has no
knowledge of interactions, so all projects just have utility of 1.

ES Project a is 11
20

-affordable; projects b and c are 1
2

-affordable;
projects d and e are 1

3
-affordable. ES takes the project with lowest

qValue (using lexicographic tie-breaking), which is d, followed by
e as values do not change over iterations.
Each voter is left with a budget of 2

3
, and projects are still 11

20
-

affordable for a and 1
2

-affordable for b and c. In the next iteration,
project b will be chosen and ES will terminate as there are no q-
affordable projects. The final bundle of chosen projects isWES =
{b, d, e} and the social welfare is 1 + 1 + 1 + 1

5
= 3 1

5
as voter 1

got two substitute projects.
IES This procedure begins the same way as ES as no project was

funded yet and all utilities are 1, therefore projects d and e are
funded in the first two iterations.
Since project b is substitute for v2 and project c is substitute for v1,
their utility changes to u2(b) = u1(c) = 1

5
in the next iteration,

making them 5
6

-affordable. Since project a is not affected it stays
11
20

-affordable.
Project a has the lowest qValue, therefore, it will be chosen and
IES will terminate as no item is q-affordable anymore. The out-
come isWIES = {a, d, e} and the social welfare is 1+1+1+1 =
4 (project a provides utility 1 for each voter, project d provides
utility 1 for v1 and project e provides utility 1 to v2).

As can be seen from the example, when using ES, voter 1 gets
two substitute projects, while when using IES, the mechanism will
prioritize using voter funds for projects that are not substitutes even if
they are more costly. A more detailed welfare analysis of the different
methods can be found in Section 5.

4 Proportionality

We start this section by mentioning the notion of Fully Justified
Representation [21] (FJR), which was defined for additive utilities
but naturally extends to utilities with arbitrary interactions. Peters
et al. [21] suggests the Greedy Cohesive Rule (GCR) which satis-
fies FJR (regardless of interactions), but runs in exponential time. In
addition, they show that FJR implies a weaker notion of proportion-
ality called Extended Justified Representation (EJR-1) which will be
defined below.

In the rest of this section, we revisit the definition of EJR-1 and
the proof of ES holding it in the additive setting. Then, we show
that in interaction settings, there may not always exist an outcome
that satisfies EJR-1. As a solution, we give an extension of EJR-1
suited for such settings, revealing ES may not meet this criterion. Fi-
nally, we demonstrate that IES satisfies this extension with substitute
interactions and propose a variation of IES that satisfies a relaxed
proportionality notion for all interaction types.

4.1 Proportionality in the Additive Setting

Let us recall the proportionality definition for additive utilities [21]
where each voter i gets a utility of ui(p) for project p ∈ P . For a
function α : P → [0, 1], we mark ∀T ⊆ P ;α(T ) :=

∑
p∈T α(p).

Definition 1 (Cohesive group [21]). A group of voters S is (α, T )-
cohesive, where α : P → [0, 1] and T ⊆ P , if |S|/n ≥ cost(T )/L
and if ui(p) ≥ α(p) for all i ∈ S and p ∈ T .

Definition 2. (Extended Justified Representation Up To One
Project—EJR-1 [21]). A rule R satisfies EJR-1 if for each elec-
tion instance E, each α : P → [0, 1], T ⊆ P , and each (α, T )-
cohesive group of voters S there exists voter i ∈ S such that either
ui(R(E)) ≥ α(T ) or for some p∗ ∈ T it holds ui(R(E)∪{p∗}) >
α(T ).

We next decompose the main parts of the proportionality proof
from [21], in order to see which parts should be amended once inter-
actions are introduced. The proofs of the presented propositions can
also be found in Appendix A for completeness.

Consider some PB instance and a (α, T )-cohesive group S. De-
note α :=

∑
p∈T α(p). We must show there is some i ∈ S with

utility at least α, or exceed it with one additional project.
The proof starts by defining three separate runs:

(A) ES runs on the original instance and outputs the outcome W .
(B) ES runs on the original instance, but voters in S have no budget

constraints when paying for candidates in T .



(C) ES runs with only voters S and projects in T , unlimited budgets,
and where ui(p) = α(p) for all voters and projects.

Note that if at the end of run (B) no voter in S exceeds their initial
funds of L

n
, then the outcome of (B) is the same of (A) and all projects

in T are selected so we are done.
In the case that some voter i∗ pays more than L

n
in run B, we con-

sider the iteration voter i∗ first exceeds her budget, and p∗ is selected.
Let W ′ be the set of projects selected before p∗ (which are the same
in run A and B).

Definition 3. (cost-utility function). The function f(B)(x) represents
the amount of funds that voter i∗ had to spend during the run (B) un-
til receiving a utility of x.2 The function f(C)(x) is similarly defined
for run (C).

The following three propositions are not stated as such in [21], but
are shown there as part of the main proof:

Proposition 1 ([21]). f(C)(x) is a convex function.

Note that in run (C) as there are unlimited funds, all projects are
always σp-affordable 3 and thus it holds for any project p ∈ T :∑

i∈S

σpα(p) = |S|σpα(p) = cost(p) (2)

Proposition 2 ([21]). Under run (B) at each step, any not-yet-
selected p ∈ T is ρ-affordable for some ρ ≤ σp.

Proposition 3 ([21]). f(B)(x) ≤ f(C)(x) for all x ∈ [0, α].

Given the point α it holds:

f(C)(α) =
∑
p∈T

σp · α(p) =
∑
p∈T

cost(p)

|S| =
cost(T )

|S| ≤ L

n

And by Proposition 3 it holds:

f(B)(α) ≤
L

n
(3)

To conclude, consider the state exactly after (B) adds project p∗.
Voter i∗ hast spent at least L

n
at this point. There are two cases:

1. i∗ spent exactly L
n

. In this case p∗ is also selected by (A) as (A)
and (B) behave the same until this point. According to Eq. (3)
ui∗(W(B) ∪ p∗) ≥ α, thus ui∗(W ) ≥ α.

2. i∗ spent strictly more than L
n

. In this case, by definition of (B), we
have p∗ ∈ T such that Eq. (3) implies ui∗(W(B) ∪ p∗) > α. As
W(B) ⊆W , it implies ui∗(W ∪ p∗) ≥ α.

In both cases, W satisfies EJR-1.

4.2 Proportionality In The Projects Interaction
Settings

Recall that some notions of proportionality are guaranteed to exist
even with arbitrary interactions, e.g. FJR [21]. Yet, while FJR implies
EJR in the additive case, this is no longer true once interactions are
introduced, and in fact EJR-1 may not hold for any outcome.

2 To make the function continuous each two points are connected by a straight
line such that the utility of a project is given proportional to how much of
its cost has been paid so far.

3 σp is the projects qValue

To see this consider the simple instance with a single voter that
approves two substitute projects P = z = {p1, p2} with enough
budget to fund both and fz(k) = (1, 2). It is easy to see that the sin-
gle voter is cohesive for T = P and α ≡ 1, so α(z) = 2, therefore
for W to hold EJR-1 we require that either ui(W ) ≥ α(z) or there
is some project p∗ ∈ z such that ui(W ∪ {p∗}) > α(z). However,
even funding both projects (i.e. W = P ) only provides a total utility
of 1—strictly lower than the required utility of α(z) = 2.

This demonstrates an issue where an outcome W can achieve
lower utility than the utility we guarantee due to W because α is ad-
ditive while the utility is not. Even if we explicitly disallow a set from
blocking itself, there are other instances where there is no outcome
that holds EJR-1. For a more detailed example of such a scenario see
Appendix B.

As can be seen in the example, the reason that there might not
be an outcome that satisfies EJR-1 is related to Def. 1 where α is
only defined for singletons. Therefore, we would like to extend the
cohesiveness definition such that αwill also consider sets of projects.
For p ∈ P,B ⊆ P , letMUα(p,B) := α(B∪p)−α(p). Difference
from Def. 1 is highlighted.

Definition 4 ((α, T )-cohesive with interactions). A group S ⊆ V
of voters is (α, T )-cohesive for a set of projects T ⊆ P and α :
P |P | → R+, if |S|/n ≥ cost(T )/L and for any project p ∈ T and
a subset of projects B ⊆ P \ {p} it holds ui(p|B) ≥MUα(p,B).

Extended Justified Representation with interactions up to one
project (EJRI-1) is the same as Def. 2, except we now use Def. 4
for cohesive groups.

Under the new definition, we again always have at least one out-
come that satisfies EJRI-1 (See next section that IES outcomes al-
ways satisfy EJRI-1). For example, going back to the example above,
the single voter is still cohesive for the two projects, however under
Def. 4, α(P ) = 1 = ui(p1). Thus any outcome with at least one
project holds EJRI-1.

We argue that EJRI-1 is the correct extension for the interaction
settings for three reasons: first, EJRI-1 collapses to the EJR-1 defi-
nition when the projects utilities are additive. Second, FJR implies
EJRI-1 with arbitrary interactions (see Prop. 5 in the appendix). Fi-
nally, as the next section shows, IES holds EJRI-1 under substitute
interactions (and runs in polynomial time).

To conclude this section, we note that EJR-1 and EJRI-1 are in-
comparable i.e. there are instances where outcome that satisfies EJR-
1 does not satisfy EJRI-1 and the other way around. One exception is
when we have only substitute interactions, then EJR-1 implies EJRI-
1. See Prop. 4 in Appendix A and discussion in Appendix B for de-
tails.

4.3 Proportionality of IES and PIES

Next, we will show that IES holds EJRI-1 if all interaction functions
are for substitute projects as defined in Section 2. The proof will be
an adaptation of the proof shown in the previous section for additive
utilities. The following changes are required:

1. Defining (C) for setting with projects interaction.
2. Proving that Proposition 3 holds for this settings.

Given those changes, the rest of the proof stays the same.
We start with defining (C): IES runs on a smaller instance with

only voters S and projects in T , with an unlimited budget. The inter-
action functions are defined such that the following holds:

∀T ′ ⊆ T, i ∈ S;ui(T ′) = α(T ′)



Proof of Proposition 1 under substitutes. We note that as we con-
sider only substitution interaction functions, the marginal utility of
each project can only decrease between interactions while their cost
left unchanged. For this reason, their ratio between cost to utility i.e.
σp can only increase. Since IES always takes the project with the
lowest ratio and the ratio of the other project can only increase be-
tween iterations, the slope of f(C)(x) can only increase.

This proposition means that the ratio of projects selected in (C)
can only be higher as it progresses.

Next, we note that Proposition 2 does not hold in our settings.
The reason is that a project that will be selected in (C) first from its
interaction set, can be chosen later in (B) lowering its utility and thus
the same project has lower ratio in (B) compared to (C).

Therefore, we will skip this proposition, and prove directly Propo-
sition 3, i.e. that f(B)(x) ≤ f(C)(x):

Proof of Prop. 3 under substitutes. Given some point x′ ∈ [0, α]
which isn’t a boundary point for either f(C)(x) or f(B)(x), we say
that x′ is on the segment that correlates to some project d ∈ P on
f(B)(x) (call it segment 1) and on segment that correlates to some
project ps ∈ T on f(C)(x) (call it segment 2). See Figure 1 for an
illustration. Consider the time point twhere (B) chooses to add d (be-
fore adding it). At time t, i∗ utility in (B) equal to the x-coordinate
of the (B) segment, thus less than x′.

We note by Bx′ and Cx′ the projects selected by (B) and (C) until
getting to utility x′ (without ps and d). There is some interaction set
z ∩ T 6= ∅ such that zB := |Bx′ ∩ z| ≤ zC := |Cx′ ∩ z|. If this is
not the case, it means that Cx′ ⊂ Bx′ , however it not possible that at
point x′ (B) have selected all projects as (C) and more as it will have
higher utility.

Therefore, there is some project pj′ ∈ z such that j′ :=
maxk k ≤ s. In addition, as zB ≤ zC , there is some project pj ∈ z
with j ≤ j′ such that pj was not selected at time t by (B). At this
time, the utility for this project in (B) is at most as the utility of pj′
when selected in (C) as there is at most the same amount of substi-
tutes from z at time t in (B). In addition, (C) chooses projects from
the same interaction set from cheapest to most expensive (as they
share the same utility in each iteration), thus cost(pj) ≤ cost(pj′).

As a result, the cost-utility ratio of pj in (B) is at most as the ratio
of pj′ in (C). Furthermore, from Proposition 1, the ratio of pj′ in (C)
is at most the ratio of ps in (C). Since (B) always chooses projects
that have the smallest ratio it must be that d has a ratio at most as this
of pj in (B). Accordingly, this means that d also has a ratio at most
as the ratio of ps in (C).

Since (B) always chooses a project that is ρ-affordable with the
smallest ρ it must be that d is ρ-affordable with ρ ≤ ρ′. This mean
that the slope at (B) segment is at most ρ and therefore at most σpj .
On the other hand, the segment on (C) have slope of ps which is
weakly lower than pj . Therefore, (B) segment have weakly lower
slope than (C). As it is true for any x′ (except boundary points) the
proposition holds.

While IES holds EJRI-1 when using substitutes, this is not true
anymore for the general case, which can also be seen in the following
example:

Example 2. Given PB scenario with 3 voters {v1, v2, v3} and
5 projects {p1, p2, p3, p4, p5} where cost(p3) = cost(p4) =
cost(p5) = 1, cost(p1) = cost(p2) = 1.5, the budget L = 3 and
the voters preference shown in the following table:

{p1, p2} {p3} {p4} {p5}
f (0, 10) (1) (1) (1)
v1 {p1, p2} {p3} ∅ ∅
v2 {p1, p2} ∅ {p4} ∅
v3 {p1, p2} ∅ ∅ {p5}

Since the utility for the first project from p1 and p2 is zero, nei-
ther of those project will be ever selected by IES. Instead, projects
{p3, p4, p5} will be selected which results in utility 1 per voter.

Note that all voters are cohesive over the project set {p1, p2} and
should guarantee a utility of 10 to at least one voter. Adding another
project will add the utility of zero, which would not guarantee EJRI-1
either.

To support proportionality for general interactions IES can be
modified to consider all subsets of each z ∈ Z at each iteration, we
will call this method Partition IES (PIES) and it is defined more for-
mally in appendix C. This has two drawbacks: one is that runtime is
exponential in |z∗| := maxz∈Z |z|; and the other is that the obtained
proportionality notion is further relaxed to EJRI-z instead of EJRI-1,
i.e. instead of requiring EJRI up to one project p ∈ T , we require
EJRI up to one interaction set z ∈ Z; z ∩ T 6= ∅ (see appendix C
for proportionality proof).

As can be seen, PIES guarantee EJRI-z which is weaker compared
to EJRI-1, promising a cohesive group a lower welfare guarantee.
However, in the case that all interactions sets are relatively small the
guarantees is not much weaker compared to EJRI-1.

Given the results so far, one might ask, what happen if we relax
the model such that instead of single partition Z, each voter defines
its own partition. Regrettably, IES does not hold EJR-1 or EJR-z in
this scenario. More details about it can be found in the appendix D.

5 Welfare Analysis
So far we saw under what conditions IES and PIES are proportional,
however one of the main purposes of extending the way to express
preferences is to allow for higher social welfare. For this reason, in
this section we will focus on analysing the social welfare that can be
achieved by the different methods.

5.1 Worst-Case Analysis

We remind the reader that in the approval settings (without interac-
tions) it was shown that the welfare ratio between ES and the opti-
mal welfare is bounded by the number of voters, and bounds remain
similar for all proportional rules [10]. In contrast, when moving to
additive utilities this ratio can be much worse. This is because ES
can choose project with the lowest utility while the optimal outcome
will take the projects with the highest utility. Since this can happen
for all voters between each pair of projects, we get that it is possible
for ES to get a welfare ratio as bad as O(|P | · |V | · max utility

min utility ).
Since utilities with interactions only generalize additive utilities

further, they are susceptible to similar issues. However, it is not pos-
sible to get worse welfare ratio then the one described (i.e. the bound
is tight), as every voter can have at most O(|P |) projects which it
gets with the minimum utility instead of the maximal utility. For this
reason, the worst-case welfare approximation bounds of ES and IES
are equally bad. See Appendix E for details.

However, for specific instances, one rule might be better than oth-
ers. Next, we would like to answer whether one of the aggregation
methods ES / IES / PIES is superior to the other in terms of welfare.
To answer this we start with the following example:



Figure 1: Illustration of the proof of Proposition 3. Based on Peters et al. [21, Figure 4]

Given partition Z = {z1, z2} such that each includes half of the
projects, the interaction functions for all voters are same:

fiz1(k) =

k∑
j=1

{
1, if j = 1.

5, otherwise.
; fiz2(k) =

k∑
j=1

5j−1 (4)

For some small ε > 0, we define the cost of one project in z1 to be
1−ε and the cost for the rest of the projects in z1 to 1+ε. All projects
in z2 have cost of 1. The budget for this instance is L = |z1| = |z2|.

All projects "appear" to ES as with a utility of 1 so it will choose
them by their price i.e. will take the cheap project from z1 and L− 1
projects from z2 having the utility of 1 + fiz2(L − 1). In contrast,
we have IES which will also start with the cheap project from z1
but after that the utility for the rest of the projects in z1 updates to
5, causing IES to use the rest of the budget for only projects from
z1, which have total welfare of fiz1(L − 1). As can be seen, as the
number of projects increases the ratio between ES and IES increases.

While this example show that ES welfare can be significantly
higher that IES, by switching between z1 and z2 costs we can switch
between their outcomes, thus having ES having significantly lower
welfare.

Therefore, we see here that each of ES and IES can be much better
or worse than the other for two almost identical instances.

PIES on the other hand choose the optimal outcome in both cases.
However, there are scenarios where PIES can have significantly
lower welfare compared to ES and IES. We will see this in the fol-
lowing example:

Example 3. Given PB instance with three projects, one voter that
approve all projects and a budget L ≥ 4. The interaction functions
are:

p1, p2 p3
f 1, 3 L

cost(p1) = cost(p2) = 1.1; cost(p3) = L− 1.
When running PIES, we consider p1/p2 with 1.1-affordability, p3

with L−1
L
−affordability and {p1, p2} with 11

15
-affordability. Since

L ≥ 4, {p1, p2} will be selected and PIES will stop. In contrast,
both ES and IES which consider only one project at a time, will fund
p3, followed with one of the other projects and stop. This mean that
PIES will stop with utility of 3 4, while ES and IES stops with utility
of L + 1. Therefore, PIES welfare can be significantly low than the
welfare of ES and IES.
4 We can also add additional project that cost L− 2.2 with utility 1 so PIES

will exhaust its budget

To conclude this section, we saw that in the project interaction
settings neither of the methods ES, IES, and PIES dominate the other
and there are instances where each of the methods can be better than
the other.

5.2 Average Case Analysis

In the previous section we looked at the worst case of the aggrega-
tion methods, however, those cases usually happen in extreme cases
which are not very likely to happen. Therefore, in this section, we
would like to understand how they behave on average in a variety of
instances.

Simulation Settings. For this purpose we run simulations with dif-
ferent types of interactions, comparing the average welfare the voters
receive for four aggregation rules: ES (which does not take interac-
tions into account), IES, PIES and proportional greedy (greedy by
utility/cost). The reason for these rules is to see if taking inter-
actions into account can help to achieve better welfare and having
proportional greedy (PG) as a baseline, which is known to achieve
good welfare.

The simulations include 50 projects with their cost sampled from
Normal distribution N(300, 30) and split randomly into partitions
each of size [1, 10]. Next, 100 voters approve randomly 3 partitions
each having one of six types of interactions:

1. Type 1 (Minimal substitutes) - the voter prefers one non-substitute
project over the entire set of substitute projects i.e. the utility for
the first project is 1, while any additional project has the utility of
1/m.

2. Type 2 (harmonic) - the marginal utility decrease by harmonic
series, formally: f(i) =

∑i
j=1

1
j

.
3. Type 3 (exponential sub) - the marginal utility decreases exponen-

tially, formally: f(i) =
∑i
j=1

1
1.5j−1 .

4. Type 4 (extreme complementary) - the voter significantly prefers
at least two projects and wants as many as possible, formally the
marginal utility for the first project is 1 and 50 for the rest.

5. Type 5 (linear) - the marginal utility increases linearly, formally:
f(i) =

∑i
j=1 j.

6. Type 6 (exponential comp) - the marginal utility increases expo-
nentially, formally: f(i) =

∑i
j=1 1.5

j−1.

The list of interactions comprises three types of substitute projects
(type 1-3) and three types of complementary projects (type 4-6), each
with a welfare value of 1 for the first project in each interaction set.
This deliberate choice is aimed at initially obfuscating which inter-
action set possesses the highest potential, thereby requiring IES to do



some "exploration" which is possible as more projects can be funded.
An example of such a scenario was presented in Section 5.1.

To perform the experiments Pabutools [16] library was used. As
the library currently supports additive utilities but no interactions be-
tween projects, therefore we extended it to support this settings.

Simulation Results. The results in Figures 2- 3 are created by cal-
culating the average voter welfare for each simulation as described
above followed by averaging this value over 1000 simulations. The
simulations included 9 settings: all voters have the same interaction
type, each interaction function chosen randomly from types 1-3 or
types 4-6 and each interaction function chosen randomly from types
1-6 (both substitute and complementary). Due to similarity in the re-
sults, we present here only 4 settings, where the rest can be found in
the appendix F.

Figure 2: Average voter welfare over 1000 simulations, given only
exponential sub voters (top) or only exponential comp voters (bot-
tom).

Observing Figure 2, we note that with a limited budget and
few projects fundable, the difference in welfare between ES and
IES/PIES is minimal, as interactions exert minimal influence on util-
ities. However, as the budget increases, the welfare gap widens, in-
dicating greater impact of interactions on project selection. Nonethe-
less, as nearly all projects become fundable, this gap is expected to
narrow.

In the substitutes scenario, both IES and PIES achieve welfare lev-
els nearly equivalent to PG, while in the complementary scenario,
they outperform ES but fall short of PG. Despite all three (PG, IES,
and PIES) prioritizing project selection based on cost-to-utility ratio,
IES and PIES focus on ensuring fairness over maximizing welfare.
Notably, in scenarios with uniform interaction types and thus agree-
ment on project utility, PIES achieves higher welfare by considering
sets of projects in each iteration.

Figure 3 top extends the initial observation with a mix of comple-
mentary interactions. Yet, due to the high variance in voter utilities
for projects, PIES may prioritize interactions sets with lower welfare,
resulting in lower welfare compared to IES.

Figure 3: Average voter welfare over 1000 simulations, voters have
mix of complementary interactions (top) or voters have mix of all
possible interactions (bottom).

In Figure 3 bottom, where voters can utilize all interaction types,
we observe the behavior outlined earlier. With a limited budget,
IES/PIES lacks flexibility for exploration, potentially leading to sub-
optimal choices and slightly lower welfare compared to ES. How-
ever, as the budget expands, the gap diminishes until IES begins to
surpass ES in welfare again (with PIES maintaining welfare close to
ES).

6 Conclusion And Future Work

In this paper we considered proportionality in participatory budget-
ing in the setting where there is interaction between projects. We de-
fined a variation of the EJR/EJR-1 proportionality axiom that takes
interactions into account, and suggested two variations of the cel-
ebrated ES mechanism that are proportional under project interac-
tions. The first (IES) runs in polynomial time and guarantees propor-
tionality under substitutes; and the second (PIES) is approximately-
proportional under arbitrary interactions, but its runtime may expo-
nentially depend on the size of the interaction sets, and approxima-
tion guarantees similarly deteriorate.

We extended pabutools [16] to support aggregation with interac-
tion between projects which was used to create synthetic simulations
with different types of interactions. The simulations show that IES
and PIES achieve better welfare compared to ES (which does not
take interactions into account), except in extreme cases where there
are both voters with substitute and complementary projects, and a
low budget in addition.

A natural followup question is whether there is a polynomial time
aggregation rule which holds EJRI-1 for general interactions. Fur-
thermore, our work assumes there is a joint partition of the projects
used by all voters, thus it raises the question whether there exists
a polynomial time aggregation rule that guarantees proportionality
while allowing voters to create their own partition for the substitute
projects.
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A Omitted Proofs
Proof for Proposition 1 from Section 4.

Proof. For each p ∈ T , let us write σp = cost(p)/(|S|α(p)). There
is some order over the projects in T {p1, . . . , p|T |} such that σp1 ≤
. . . ≤ σp|T | . As ES choose projects by the ratio of cost to utility and
there is unlimited funds, the projects will be selected by the described
order and the slope of Ff(C)(x) will only increase.

Proof for Proposition 2 from Section 4.

Proof. This holds as there are more voters in (B) compared to (C),
thus projects in T have weakly stronger utilities. Formally:∑

i∈S

σp · ui(p) +
∑
i∈N\S

min(bi, σp · ui(p)) ≥

∑
i∈S

σp · ui(p) ≥
∑
i∈S

σp · α(p) = cost(p)

Proof for Proposition 3 from Section 4.

Proof. Given some point x′ ∈ [0, α] which isn’t a boundary point
for either f(C)(x) or f(B)(x), we say that x′ is on the segment that
correlates to some project d ∈ P on f(B)(x) and on segment that
correlates to some project ps ∈ T on f(C)(x). Consider the time
point t where (B) choose to add d (before adding it). At time t, i∗

utility under (B) equal to the x-coordinate of the (B) segment, thus
less than x′. In addition, at this time it can’t be the case that projects
p1, . . . , ps are already selected in (B) as i∗ utility will be at least
α(p1) + . . . + α(ps) which is the right end of (C) segment which
is more than x′.Therefore, there is some pj ; j ≤ s such that (B)
did not selected yet pj at time t. By Proposition 2, at time t pj is
ρ′-affordable in (B) for some ρ′ ≤ σp. Since (B) always choose
project that is ρ-affordable with the smallest ρ it must be that d is
ρ-affordable with ρ ≤ ρ′. This mean that the slope at (B) segment is
at most ρ and therefore at most σpj . On the other hand the segment
on (C) have slope of ps which is weakly lower than pj as j ≤ s.
Therefore, (B) segment have weakly lower slope than (C). As it is
true for any x′ (except boundary points) the proposition holds.

In section 4 we mention the notion of EJR-1 and EJRI-1, which are
a relaxation of EJR and EJRI. The difference between EJR and EJR-
1 or EJRI and EJRI-1 is whether or not we allow proportionality "up
to 1 project" i.e. we might need to add 1 project to satisfy it. Next, we
will show that the stronger notions hold that EJR implies EJRI under
substitute interactions and FJR implies EJRI for any interactions.

Proposition 4. EJR implies EJRI under substitute interactions.

Proof. Suppose that some aggregation method holds EJR and lets
look at some (α, T )-cohesive group S. For every i ∈ S, every project
p ∈ T and a subset of projects B ⊆ P \ {p} it holds ui(p|B) ≥
MUα(p,B). We set an additive function α′(p) = α(p) i.e. α′ of a
project equal to α of the same project without any subset of projects.
In particular, for B = ∅ it holds ui(p) = ui(p|∅) ≥ α(p,∅) =
α′(p). As the method holds EJR we have a voter i ∈ S such that
its outcome W holds ui(W ) ≥ α′(T ) ≥ α(T ) as α can be only
smaller when taking substitution into account.

The proof that EJR-1 implies EJRI-1 under substitutes is similar.

Proposition 5. FJR implies EJRI.

Proof. Suppose that some aggregation method holds EJR and lets
look at some (α, T )-cohesive group S. For every i ∈ S, every project
p ∈ T = {t1, . . . , t|T |} and a subset of projectsB ⊆ P \{p} it holds
ui(p|B) ≥ MUα(p,B). We set β = α(T ). Then the following
holds:

ui(T ) =

|T |∑
j=1

ui(tj | ∪jk=1 tk) ≥
|T |∑
j=1

MUα(tj ,∪jk=1tk) = α(T )

Thus S is weakly (β, T )-cohesive. As the method hold FJR we have
a voter i ∈ S such that its outcome W holds ui(W ) ≥ α(T ), as
required.

B Omitted Examples
In section 4.2 we saw that there isn’t always an outcome that satis-
fies EJR-1 under the interaction settings. Example 4 give a detailed
example for such a scenario.

Example 4 (EJR-1 in the interaction settings). Given PB instance
with 8 projects split to partition: z1 = {p1, . . . , p4}, z2 =
{p5, . . . , p8}. There is a single voter with a budget of 4.

In addition, the projects in z1 are total substitutes i.e. the first
worth 1 and the rest 0, each cost 1. All projects in z2 worth 1 and
cost 1 + ε.

It is easy to see that the single voter is (α, z1)-cohesive for α ≡ 1,
so α(z1) = 4, therefore EJR-1 require that either ui(W ) ≥ α(z1)
or there is some project p∗ ∈ z1 such that ui(W ∪ {p∗}) > α(z1).

There are three cases for W :

• W contains at no projects from z1. Then W contains at most 3
projects so even with an additional project p∗ we have ui(W ) < 4
and ui(W ∪ {p∗}) ≤ 4.

• W contains at least one project from z1 but not all. Then W is
still blocked by z1, as ui(W ∪ {p∗}) = ui(W ) ≤ 3 < α(z1).

• W = z1. Then ui(W ) = 1 < α(z1) = 4.

The last case demonstrates a big issue where an outcome can block
itself as α only consider singletons while the utility affected from
projects interaction. Even if we disallow this, in the last case we have
T = {p5, p6, p7}. Our single voter is (α, T )-cohesive for α ≡ 1,
and ui(W ) = 1 < α(T ) = 3.

While this example show a case where EJR-1 outcome does not
always exist, we can do a simple modification to show that EJR-1 and
EJRI-1 are in-comparable. consider the same example, but the utility
for all projects in z1 are 1, and the marginal utilities for projects in z2
grows exponentially (with base 10). This time, the only outcome to
satisfy EJR-1 is z1 (z1 guarantee utility of 4 and z2 guarantee utility
of 3 according to EJR-1) while EJRI-1 is satisfied by choosing 3
projects from z2, guaranteeing utility of 111. As can be seen different
outcomes satisfy EJR-1 and EJRI-1 without any overlapping.

C Partition Interaction Equal Shares
In section 4.2 we saw that IES holds EJRI-1 for substitute projects,
however this does not hold anymore for general interactions. For this
reason, we suggest a variation of IES called Partition Interaction
Equal Shares (PIES). This mechanism is same as IES, but with a
preprocessing step: for each part z ∈ Z and every T ⊆ Z, add a
new project pT and remove all original projects. We set cost(pT ) :=
cost(T ) and ui(pT ) := ui(T ) for all i ∈ V . Once we have the new



set of projects the aggregation will be performed similarly to IES,
with the difference that at the end of each iteration where a project
pT is chosen, all projects pT ′ with T ∩ T ′ 6= ∅ are removed.

When running PIES we have a larger amount of projects which is
exponential in |z∗| := maxz∈Z |z|. This means that at each iteration
we need to iterate over O(|Z|2|z

∗|) projects instead of only O(M),
making PIES less efficient compared to ES and IES. However, it is
likely to assume that each interaction set size is bounded by some
relatively small value, which in this case we get that the aggregation
will still run in reasonable time.

Proposition 6. PIES holds EJRI-z for any interaction function.

We give intuition for the proof. When using PIES, we look at a PB
instance where every combination of projects in each interaction set
is represented as a project. In this scenario, all interaction functions
actually behave as functions for substitute projects, this due to the
fact that choosing a project will remove all other overlapping projects
and the utility for any non-overlapping project must be lower other-
wise PIES would have chosen the project that represent both projects.
PIES behave similarly to IES which we shown to hold EJRI-1 when
all interaction functions are proportional, but since in PIES case each
project can represent several projects from the same interaction set,
the "up to 1 project" becomes "up to 1 interaction set".

D Proportionality with Multiple Partitions

In Section 4 we saw that IES and PIES can achieve proportionality
in our settings. In this section, we consider the scenario where each
voter can submit a different partition, demonstrating that those meth-
ods fail to satisfy proportionality.

Example 5. Given a participatory budgeting scenario with 3 vot-
ers {v1, v2, v3} and 16 projects {a1−3, b1−3, c1−3, d1−3, e1−4},
where cost(a1−3) = cost(b1−3) = cost(c1−3) = cost(d1−3) =
1, cost(e1−4) = 3

2
and for each i ∈ [1, 3] the voters approve the

following:

• v1 : {(bi), (ci), (ai, di)}
• v2 : {(bi), (ai, ci), (di)}
• v3 : {(ai, bi), (ci), (di)}

Where projects at the same parenthesis the voters want exactly one
of them (the second project will have utility of zero). In addition, all
voters approve e1−4 (without interaction).

The utility for all projects (expect for the interactions) is one and
the total budget is L = 9. We will use IES (PIES works similarly) for
aggregation with tie-breaking for the worst case (tie-breaking done
for easier readability, it is possible to change the utility or cost by a
small ε value and the outcome will not change without the need for
tie-breaking).

At the first step projects a1−3, b1−3, c1−3, d1−3 are 1
3

-affordable,
while projects e1−4 are 1

2
-affordable. Using tie breaking, IES will

choose to fund project a1, leaving each voter with budget of 8
3

.
After choosing project a1, the utility of the voters update accord-

ingly u1(d1) = u2(c1) = u3(b1) = 0, resulting that projects a,b,c
becoming 1

2
-affordable, while the other projects remain the same. In

addition, each voter have a budget of two remaining.
In similar manner, projects a2 and a3 will be chosen. This results

with all projects being 1
2

-affordable as only two voters give utility >
0 for projects b1−3, c1−3, d1−3, while the utility of e1−4 projects is
still unchanged.

As there are not any interactions left, the utility for all projects
will stay the same until the aggregation stops and projects will be
chosen by tie-breaking. For this reason, we tie-break in favor of e1−4

and choosing to fund all of them, which result with exhausting the
budgeting and getting an outcome of W = {a1−3, e1−4} which give
utility of 7.

Lets note the projects set T = {a1−3, b1−3, c1−3} and set of vot-
ers S = {v1, v2, v3} which are T-cohesive with α(c,Bt) = 1, there-
fore there is at least one voter which should get utility of 9. However,
the outcome utility is 7 and even when adding one more project will
be 8, still lower than required. This is a violation of EJR-1.

An intuition to why IES does not hold EJR-1 in the example, is
looking at the projects ai − d1 as a single interaction set where the
interaction function can give a different value for different sets of
projects and does not look only at amount i.e. it isn’t indifferent to
the which project is funded anymore. Next, note that the guarantee of
EJR-1 for (α, T ) − cohesive groups depends only by the utility of
projects in T , however if the interaction functions is not indifferent
to which project is chosen, there might be some project outside of T
which hurts the utility of T .

E Welfare Worse-Case Analysis

In section 5.1 we saw the welfare ratio of ES in the additive settings,
here we will dive into the reason we get such ratio and demonstrate
it with an example.

When running ES (or one of its variations), in each iteration we
search for the project that currently has the lowest qValue, however
while it is practically calculated as the ratio between cost and utility,
it does not necessarily mean that projects with high utility will be
chosen. The reason for this is that the qValue should also be “fair",
which is reflected by higher qValue when supporters’ budget is con-
strained.

This behavior mean that ES variations will prioritize projects
where there is larger agreement about how much utility this project
is worth i.e. projects with lower variance over their utility. Therefore,
ES can result with outcomes with worse social welfare to maintain
the fairness. This downside can become more noticeable when using
PIES. The reason for this that when considering a set of projects it
might have a high utility for many voters (including complementary
projects), but even one voter which does not agree with it and give it
a low utility it will have a very high qValue. Therefore, will miss the
option to choose projects with very high utility.

To demonstrate this behavior, lets look at a scenario with 5 voters,
2 projects that cost 10 and budget of 10. All of the voters approve
the first project with utility of 2 and the second project with utility
10 except for one voter which give it utility of 2 (note we use ad-
ditive utilities). The first project will be 1-affordable, while the sec-
ond project with much higher welfare will be 2-affordable. In both
cases all 5 voters will use their entire funds, however the project with
higher total utility will have higher qValue, thus the other project will
be funded. This behavior will be further demonstrated in experiment
at Section 5.2.

This scenario can be further extended such that the utility of the
second project is increased from 10. No matter how much we in-
crease this value, as long there is one voter with low utility, the first
project will still be chosen resulting with the same welfare while the
optimal social welfare keep increasing.



F Simulations Full Results
This section present the results from the experiments described in
Section 5.2 for all types of interaction functions in Figures 4-12. We
remind the reader the six types of interaction functions:

1. Type 1 (minimal substitutes) - the voter prefers one non-substitute
project over the entire set of substitute projects i.e. the utility for
the first project is 1, while any additional project gives the utility
of 1/m

2. Type 2 (harmonic) - the marginal utility decrease by harmonic
series, formally: f(i) =

∑i
j=1

1
j

3. Type 3 (exponential sub) - the marginal utility decreases exponen-
tially, formally: f(i) =

∑i
j=1

1
1.5j−1

4. Type 4 (extreme complementary) - the voter significantly prefer
at least two projects and want as many as possible, formally the
marginal utility for the first project is 1 and 50 for the rest.

5. Type 5 (linear) - the marginal utility increase linearly, formally:
f(i) =

∑i
j=1 j

6. Type 6 (exponential comp) - the marginal utility increases expo-
nentially, formally: f(i) =

∑i
j=1 1.5

j−1

Figure 4: Average voter welfare over 1000 simulations, given only
minimal substitutes voters.

Figure 5: Average voter welfare over 1000 simulations, given only
harmonic voters.

Figure 6: Average voter welfare over 1000 simulations, given only
exponential sub voters.

Figure 7: Average voter welfare over 1000 simulations, given only
extreme complementary voters.

Figure 8: Average voter welfare over 1000 simulations, given only
linear voters.



Figure 9: Average voter welfare over 1000 simulations, given only
exponential comp voters.

Figure 10: Average voter welfare over 1000 simulations, voters have
mix of substitution interactions i.e. minimal substitutes, harmonic
and exponential sub.

Figure 11: Average voter welfare over 1000 simulations, voters have
mix of complementary interactions i.e. extreme complementary, lin-
ear and exponential comp .

Figure 12: Average voter welfare over 1000 simulations, voters have
mix of all possible interactions.


