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Abstract. The well-known Condorcet’s Jury theorem posits that the
majority rule selects the best alternative among two available options
with probability one, as the population size increases to infinity. We
study this result under an asymmetric two-candidate setup, where
supporters of both candidates may have different participation costs.

When the decision to abstain is fully rational i.e., when the vote
pivotality is the probability of a tie, the only equilibrium outcome is
a trivial equilibrium where all voters except those with zero voting
cost, abstain. We propose and analyze a more practical, boundedly
rational model where voters overestimate their pivotality, and show
that under this model, non-trivial equilibria emerge where the win-
ning probability of both candidates is bounded away from one.

That is, victory is not assured to any candidate in any non-trivial
equilibrium, regardless of population size and in contrast to Con-
dorcet’s assertion.

1 Introduction
Consider a population of N voters voting over two alternatives A
and B, with A being the better alternative according to some pre-
defined criterion. Consider further that the preference of each indi-
vidual voter is determined independently by an outcome of a coin
toss with bias p > 0.5 in favour of the better alternative. That is,
each individual voter supports alternative A with probability p and
B with the probability 1 − p. Under this setting, the famous Con-
dorcet’s Jury Theorem states that the majority rule selects candidate
A with probability tending to one when population size increases to
infinity. 1

An implicit assumption in Condorcet’s theorem is that everyone
votes, or at least that the decision to vote does not depend on one’s
preference over alternatives. In contrast, in many practical situations
such as political elections, or a local or national referendum, absten-
tion is found to be a common and prominent phenomenon. For in-
stance, the voter turnout in United States presidential elections has
been around 52%-62% over the past 90 years [19]. Abstention is also
observed to be a significant phenomenon in small-scale laboratory
experiments [2, 17].

From a rational, economic point of view, the surprise is not that
some voters abstain, but that they vote at all a.k.a. ‘the paradox of
voting’. As Anthony Downs claimed already in 1957, a rational voter
weighs the benefit of voting (which realizes only if the voter is piv-
otal) against the cost. When the size of the electorate is large, the
expected benefit derived from affecting the outcome of the election
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(i.e. being pivotal) is too small to induce voting from a significant
fraction of voters [3] giving rise to the paradox of voting.

While Condorcet’s result holds under the assumption that every-
one votes, Down’s theory of rational voting suggests that only near-
zero cost voters vote in large-scale elections. However, the data from
large-scale elections (US presidential elections, for instance) sug-
gests that a significant fraction of voters vote, contradicting the pre-
diction by the rational voting model in practice. This paper evaluates
Condorcet’s result in a two-candidate election setting where rational
voters make a strategic choice to abstain from voting.

Our goal in this paper is to understand the equilibria that arise
from a plausible heuristic-based abstention model. The most impor-
tant questions that we focus on are (1) How many equilibrium points
are induced by the abstention model and where are they located? (2)
Does the winning probability of the better/popular alternative/can-
didate approach 1 as predicted by Condorcet’s Jury theorem in any
of these equilibria? (3) What happens to the equilibrium points as
population size increases? (4) Does multi-round voting ensure that a
better alternative is chosen with higher probability over single-round
voting?

We now present some important models for voter turnout pre-
sented in the literature and then move on to our proposed voter
turnout model that depends on heuristic-based perceived pivotality
of individual votes.
The Calculus of Voting model: Originally proposed by Downs
[3] and later developed by Riker and Ordeshook [18], this model at-
tributes each voter’s decision to abstain from voting to expected cost-
benefit analysis. Let, for a voter i, pi denotes the perceived pivotality
of her vote, Vi denotes the personal benefit she receives if her pre-
ferred candidate wins an election, Di denotes the social benefit she
receives by performing a civic duty of voting and Gi denotes costs
of voting she incurs. These costs include the cost of obtaining and
processing information and the actual cost of registering and going
to polls (see also [1] for discussion of voting and rational choice). A
voter i votes if and only if

pi · Vi + Di ≥ Gi. (1)

The calculus of voting model considers pi to be the probability
that a single vote would change the outcome a.k.a. probability of an
event that the outcome of an election is a tie.2 The tie probabilities
are derived from the aggregated stochastic votes, and thus the pivot
computation and subsequent equilibrium analysis quickly become in-
tractable as the number of individual voters increases.

Myerson and Weber studied voting equilibria in a 3 or more candi-
date elections by fixing a distribution over preferences and consider-
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ing a large population sampled from this distribution, so that candi-
dates’ scores are multinomial variables [15]. While tie probabilities
vanish in the limit, they observe that the relative tie probabilities for
each pair of candidates can still be compared and thus voters’ best
responses are well defined. In a more recent work, Myerson [14] sug-
gested another relaxation by approximating candidates’ scores with
Poisson distributions.

Crucially, in the above models, the tie probabilities used for voters’
strategic calculations are derived directly from the vote distribution,
either exactly or approximately. When the size of the electorate is
large, the tie probability p ≈ 0. If voting is costly, these models
predict very low turnout—essentially that only the zero-cost voters
vote when the population increases to infinity.
Heuristic pivot probabilities: Some models assume that the voters
act based on estimated or even completely wrong beliefs. One such
heuristic is derived by Osborne and Rubinstein’s sampling equilib-
rium [16], where each voter estimates candidates’ scores based on
a small random sample of other voters. That is, even with a large
population when voters compute their beliefs based on limited infor-
mation, there is a non-negligible fraction of voters who believe they
are pivotal.

Non-probabilistic uncertainty: Other models stir away from
probability calculations and consider other voters’ heuristics, based
on dominated actions, minmax outcomes or regret [1, 7, 10, 12]. The
margin of victory plays a major role in the voter’s perceived pivotal-
ity. Controlled experiments on voters’ response to poll information
show that strategic voting is more frequent when the winning margin
is small [11, 7]. It is also observed that the decrease in participating
voters is very slow and not consistent with standard models of ra-
tional voting behaviour [2, 5]. Fairstein et al. [5] show that voters’
actions are more consistent with various heuristics based on the mar-
gin than with ‘rational’ utility maximization models. The key point
in these models is that voters form a heuristic belief of their pivotality
based on the voting profile, and that an equilibrium means the belief
justifies itself [1, 9].

Analyzing every such model separately would be tedious and leave
us with an isolated set of narrow results. Instead, we identify the main
factors common to all of these models, and suggest a flexible frame-
work that captures a wide range of possible rational and boundedly-
rational behaviours, without committing to one model in particular.
We still consider that the voters seek to maximize their own expected
utility as in the calculus of voting model (Eq. (1)). However, in con-
trast to the calculus of voting model, in our model voters decide to
abstain based on heuristically estimated perceived pivotality. This
estimate is also a function of the margin of victory as in the latter
models we mentioned. Our proposed heuristic model for computa-
tion of perceived pivotality is inline both with empirical [4, 6] and
experimental [2, 5] findings, and with the models developed therein
that aim to explain high turnout in elections.

We emphasize here that we do not claim to provide a new uni-
versal model of strategic voting. Rather, we want to capture a broad
class of models that share similar properties (dependency on margin
and population size) in order to provide results that are not model-
specific.

Contributions We show that the set of equilibrium points induced
by proposed abstention model consists of equilibrium points pre-
dicted by the fully rational (such as calculus of voting) model that
satisfy Condorcet’s Jury Theorem (CJT) and some more non-trivial
equilibrium points. Our results show that there are non-trivial equi-
libria where the popular candidate is more likely to win, but the win-

ning probability is bounded away from 1. This probability, perhaps
surprisingly, depends only on the distribution of voting costs in the
population. The bottom line of this paper is the result that under a
plausible abstention model, induced non-trivial equilibrium points
evade both Down’s paradox of voting (only a small fraction of homo-
geneous voters vote) as well as CJT (the win probability of popular
candidate approaches 1).

2 Model
We study a two-candidate (referred to as A and B) election with N
voters. Each voter is either a supporter of A (prefers candidate A,
i.e. A ≻i B) or a supporter of B. We adopt the classical calculus
of voting model as follows. We denote as ci := max{0, Gi−Di

Vi
} the

effective cost of voting for voter i with Gi, Di and Vi as defined in
Eq. (1).

The core supporters (voters with zero effective voting cost) de-
rive more utility from voting for their preferred candidate than costs
incurred in participating in the voting process. Voters with non-zero
effective costs, on the other hand, vote only if the perceived pivotality
of their vote exceeds the voting cost. For mathematical convenience,
we normalize the effective cost of voting to lie between 0 and 1.

A better alternative in a two candidate election setting is the most
popular candidate under Condorcet’s Jury theorem, i.e. the candidate
who wins an election with probability one when the size of the voting
population tends to infinity. Note that except in a case where both
candidates have equal support (aka when p = 0.5) such a candidate
always exists.

We consider that the effective cost of voting and the preference
of voter i as an independent sample from a commonly known joint
distribution D over [0, 1]× {A,B} and is denoted by tuple (ci, Ti).
Without loss of generality, we consider that more voters support A in
expectation a.k.a. A is the better/popular candidate. In an objective
sense, A is the winning candidate (in the limit) if the preferences of
everyone—including the abstaining voters—in the population were
aggregated. That is, A would have won the election with the proba-
bility tending to one had every voter voted irrespective of her voting
cost.

Prior to voting, every voter, given a cost distribution D and elec-
torate size N , determines the perceived pivotality of her vote. Each
voter i then privately realizes the tuple (ci, Ti) sampled indepen-
dently from D. With the knowledge of N, (ci, Ti) and D, a voter
i then makes a choice of whether to vote or to abstain. This choice
crucially depends on the perceived pivotality pi of her vote. We con-
sider that pi is a function of the expected3 number of votes for each
candidate and the expected winning margin. Note that since D and N
are fixed and commonly known we have, pi = p for all i ∈ [N ]. In
particular, the perceived pivotality pi does not depend on the voters’
type Ti. However, note that her choice to abstain may depend on her
type.
Abstention Model: A voter i votes if p ≥ ci and abstains oth-
erwise. As mentioned previously, the perceived pivotality p denotes
the voter’s belief about the extent to which a single vote (her vote) is
important. Thus a voter votes if she perceives herself as sufficiently
pivotal. While ci is privately known, p is a common knowledge and
this value depends only on the aggregate voting profile.
Support Functions: Given a cost threshold c, let the random vari-
able X

(i)
A (c) := 1

N−1

∑
j ̸=i 1[cj ≤ c and A ≻j B] denote fraction

of supporters—other than voter i—of candidate A having the voting

3Expectation is taken with respect to distributions DA and DB .



cost at-most c and similarly, define X
(i)
B (c) := 1

N−1

∑N−1
j ̸=i 1[cj ≤

c and B ≻j A]. Note that, as X
(i)
T (c) does not depend on her type

Ti and her private cost ci and since every agent is exposed to the
same knowledge, we have, XT (c) := X

(1)
T (c) = X

(2)
T (c) = · · · =

X
(N)
T (c) for all T ∈ {A,B}. Let sT (c) = E[XT (c)] be the ex-

pected fraction of supporters of candidate T with cost at-most c. We
call sT (.) the support function of candidate T .

We consider that sA, sB : [0, 1] → [0, 1] are continuous, non-
decreasing functions such that sA(c) + sB(c) ≤ 1 for all c ∈ [0, 1]
with sA(1)+ sB(1) = 1 (see Figures. 1 and 4). An election instance
I is thus given by tuple ⟨N, sA, sB⟩.

Given c ∈ [0, 1], the expected number of voters with effective
voting cost at most c is given by

n(c) = (sA(c) + sB(c))N. (2)

We remark here that n(c) is a point estimate of the voter turnout
with cost threshold c. Similarly, the estimated margin of victory m is
derived directly from the number of active voters n and the support
functions as

m(c) =
|sA(c)− sB(c)|
sA(c) + sB(c)

. (3)

We omit the argument c from m and n whenever it is clear from
context. A Perceived Pivotality Model (PPM) is a decreasing func-
tion p : N × [0, 1] → R, mapping the number of active voters n and
the estimated margin of victory m to a perceived pivot probability.

As mentioned earlier, perceived pivotality is each agents’ subjec-
tive assessment of the likelihood that her vote is pivotal. In next
section, we briefly overview fully-rational and heuristic-based PPMs
studies in literature and propose tie-sensitive PPM studied in the rest
of the paper.

3 Perceived Pivotality Models
In models that aim to capture fully rational behaviour, p represents
the probability that a given voter’s vote is pivotal; i.e. the probabil-
ity that an individual vote will be used to determine the winner of
the election. We first describe models where the perceived pivotal-
ity exactly or approximately represents the tie probability, and thus
approaches 0 as the population increases to infinity.

Fully Rational model

Definition 1 (Strongly Vanishing PPMs). We say that a PPM has
strong vanishing pivotality if limn→∞ p(n,m) = 0 for all m ≥ 0.

Perhaps the most common pivot probability model is a Binomial
model, corresponding to a known number of voters n who choose
independently whether to vote for A or B. This is exactly the model
used in Condorcet’s Jury Theorem and in early Calculus of Voting
models [18].

Example 1. (Binomial PPM) Let I be a given election instance with
sA(0), sB(0) > 0. 4

p(n,m) = Pr
x∼Bin

(
n,

sA(c)

sA(c)+sB(c)

)(x = ⌊n/2⌋). (4)

4We assume that at least one of sA(0) and sB(0) is strictly positive.

For large n using Stirling’s approximation, we have

p(n,m) ∼=
√

2

πn
((1 +m)(1−m))(n/2) <

1√
n

We note that the pivot probability decreases at rate 1/
√
n for m ≈ 0,

and much faster for a fixed positive margin. Thus the model sug-
gests that in a large election only extremely low-cost voters would
vote. That is, in large elections the outcome is determined only by
the fraction of core supporters of the candidates.

The Binomial model introduces a dependency between candi-
dates’ scores that is difficult to work with. Hence, a later model by
Myerson [13] suggested drawing the scores of each candidate inde-
pendently from a Poisson distribution.

Example 2. (Poisson PPM): Let I be a given election instance. The
Poisson PPM model considers the perceived pivotality as the prob-
ability that an equal number of supporters are drawn from Poisson
distributions with parameters N · sA(c) and N · sB(c). That is,

p(n,m) = Pr
kA ∼ Poisson(sA(c)N)
kB ∼ Poisson(sB(c)N)

(kA = kB) (5)

Conceptually, the Poisson model is more appropriate in situations
where voters can abstain (as the total number of active voters is
not fixed). However p(n,m) behaves very similarly to the Binomial
model, and for our purpose they are almost the same (as all Strongly
Vanishing PPMs are).

Tie-Sensitive model

A more cognitively plausible assumption is that voters consider
themselves pivotal if the margin is small enough, regardless of the
number of voters. The dependence of such tie-sensitive models on
the margin m and number of active voters n is captured by the fol-
lowing two properties. We can see these properties as an abstraction
of various bounded rational behaviors described in the introduction.

Property 1. Given m > 0, there exists n0 ∈ N such that p(n,m) ∝
1√
n

for n ≥ n0.

Property 1 captures the dependence of perceived pivotality on the
population size, which is aligned with the fully rational models.5

In contrast, the heuristic dependence of PPM as decreasing in the
margin m, diverges from the rational models:

Property 2. There exists α ∈ (0,∞) such that for any fixed n ∈ N,
p(n,m) ∝ 1

mα .

The simplest model that satisfies both properties is obtained by
directly combining the dependency on n and m:

Definition 2 (Tie-sensitive PPM). p(n,m) = min{1, 1
mα

√
n
} for

some α > 0.

For theoretical analysis, we assume in the remainder of this sec-
tion that α = 1 (linear margin PPM), and extend these results using
simulations to other values of α in Section 8. We are interested in
characterizing equilibria as N → ∞.

5The
√
n reflects the standard deviation of summing n independent vari-

ables.



Equilibiria

Definition 3. Given an election instance I with PPM p(., .), we call
c ∈ [0, 1] an equilibrium if

c = p(n(c),m(c)). (6)

We distinguish the equilibrium points into two categories: trivial
and non-trivial. A trivial equilibrium point is characterized by the
condition that as the population size increases to infinity, the equi-
librium point converges to zero. We say that an election equilibrium
admits a Jury theorem if the popular candidate emerges as a clear
winner in the limit. That is, Pr(A wins) → 1 as N → ∞.

Next we define pivot point as a cost value where both the candi-
dates have equal support from the voters with costs atmost c.

Definition 4 (Pivot point). A cost value c ∈ (0, 1) is called a pivot
point if sA(c) = sB(c).

Note that the set of pivot points may be empty. We now show that
in this case, the trivial equilibrium is the unique equilibrium under
tie-sensitive PPM. We formalize this argument in our first result.

Proposition 1. Let IN be an election instance with N voters and
positive, continuous and increasing functions sA, sB defined over
[0, 1] such that sA(c) > sB(c) for all c ∈ [0, 1]. Also let c0(N)
be an equilibrium cost threshold (Eq. (6)) induced by a tie-sensitive
PPM, then P(A wins) → 1 as N → ∞.

The proof of Proposition 1 follows directly the fact that since sA
and sB do not intersect, m(c) > 0 for all c. Hence for every c >
0, there is a large enough N such that at least (sA(0) + sB(0)) ×
N voters vote. This fact along with Property 1 drives the perceived
pivotality of the individual vote to 0 causing the equilibrium cost also
to decrease to 0 in the limit.

In a more interesting case where sA and sB intersect, we argue that
in addition to the trivial equilibrium around c = 0, two more nontriv-
ial equilibria emerge—each on either side of pivot point ĉ (see Figure
1 for illustration with linear support functions). Interestingly, these
nontrivial equilibria admit ‘non-Jury’ result as the winning proba-
bilities of any candidate (candidate A in Figure 1) is bounded away
from 1. We now prove this formally.

4 A Non-Jury Theorem with Linear Support
Let C be the set of all pivot points. We begin by showing that for large
values of N , non-trivial equilibria emerge around the pivot point and
converge to the pivot point as N goes to infinity.

Proposition 2. Let IN be an election instance with N voters and
linear, positive, continuous and increasing functions sA, sB defined
over [0, 1] such that sA(ĉ) = sB(ĉ) for some ĉ ∈ (0, 1). Under the
tie-sensitive PPM with α = 1, there are three equilibria c0(N) <
c−(N) < ĉ < c+(N), such that

1. limN→∞ c0(N) = 0, and
2. limN→∞ c−(N) = limN→∞ c+(N) = ĉ.

The proof of Proposition 2 is given in the Appendix. We remark
that the equilibria c−(N) and c+(N) are not symmetric: only c+ is
stable (see arrows at top of Fig. 1 and Section 5); and winning prob-
abilities behave differently (Section 8). We are now ready to prove a
non-Jury result for the linear support setting.
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c+ cc−c0 ĉ
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Figure 1: The pivot point ĉ is marked by a circle at the intersection of
the support functions, with the two non-trivial equilibria on its sides
(dashed lines). For the upper equilibrium c+, the probability of a
random voter to vote A or B is proportional to sA(c

+) and sB(c
+),

respectively. The m′ is proportional to the margin of victory. The
bold arrows above indicate that c+, c0 are stable equilibria whereas
c− is often not stable.

Theorem 3 (A non-Jury Theorem). Under the conditions of Propo-
sition 2, in any nontrivial equilibrium there is a constant β < 1 such
that the winning probability of either candidate is at most β.

Proof. Let ĉ ∈ (0, 1) be the intersection point, i.e. sA(ĉ) = sB(ĉ)
. We have from Theorem 2 that for sufficiently large N , there are
exactly two non-trivial equilibria around the pivot point. We prove
the stated result for each of the equilibrium points separately.

The right side equilibrium i.e. (c+ > ĉ): This case is de-
picted in Figure 1. Let µ be the expected number of votes received
by candidate A i.e. µ = Pr(vote A) · n(c+) where Pr(vote A) is
the probability that a randomly selected voter votes for candidate A.

We prove the non-Jury result by showing that the absolute differ-
ence between the votes required to win an election n(c+)/2 and the
expected number of votes µ in favour of candidate A are close (see
Figure 2). We first bound Pr(vote A).

Claim 4. Let Pr(vote A) denote the probability that a randomly
selected voter i ∈ [N ] votes for candidate A under an equilibrium
c+ i.e. PrD(A ≻i B ∩ ci ≤ c+). Then

1

2
+ ε1/

√
N ≤ Pr(vote A) ≤ 1

2
+ ε2/

√
N (7)

Where ε1 :=
√

sA(ĉ)/2 and ε2 := 1/4ĉsA(ĉ).

We have from Claim 4 that

|n(c
+)

2
− µ| = n(c+)|1

2
− Pr(vote A)| ≤ ε2

√
n(c+) (8)

Furthermore, the winner is chosen by an election determined by a
Binomial random variable with parameters Pr(vote A) and n(c+).
The standard deviation of this random variable is given as

σ =
√

n(c+) Pr(vote A)(1− Pr(vote A))

≥
√

n(c+)

√
(0.5 + ε1/

√
N)(0.5− ε2/

√
N)

For N ≥ max(16ε21/3, 64ε
2
2/9) we have

σ ≥
√

n(c+)/4. (9)
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Figure 2: An illustration of non-Jury theorem under equilibrium c+.
The number of votes received by A follows a binomial distribution
as shown by the blue curve. As N increases the σ gets smaller at rate
1/

√
N , so the tail should get smaller as well; but on the other hand

µ gets closer to n+/2 at roughly the same rate, hence the non-Jury
theorem.

Equations (8) and (9) together imply that |n(c+)/2− µ| ≤ 4σε2 =
σ

ĉsA(ĉ)
. We can further remove explicit dependence on the support

function by observing that ĉ ≤ 2sA(ĉ) (proof in Appendix).

Observation 5. ĉ ≤ 2sA(ĉ).

That is, the difference between the mean and the threshold for A’s
victory is bounded by 2σ

ĉ2
for a large value of N . Equivalently, the

win probability of candidate B is at-least 1−F ( 2σ
ĉ2
). This contradicts

the Jury theorem (see Figure 2). Further, for a large value of N we
can approximate the Binomial distribution by a Gaussian distribution
with mean µ and standard deviation σ. The winning probability of
candidate B is at-least 1− Φ( 2σ

ĉ2
).

Interestingly the closeness between n(c+)/2 and µ is determined
by the position of the pivot point. For larger ĉ the two quantities
are close and hence the probability that an unpopular candidate
(candidate B) wins an election is comparatively large.

The left side equilibrium i.e. (c− < ĉ): The analysis of this
case follows similarly to that for the right side equilibrium with the
roles of A and B reversed.

Claim 6. Let Pr(vote B) denote the probability that a randomly
selected voter i ∈ [N ] votes for candidate A under an equilibrium
c− i.e. PrD(B ≻i A ∩ ci ≤ c−). Then

1

2
+

ε1√
N

≤ Pr(vote B) ≤ 1

2
+

ε2√
N

.

Where ε1 =
√

max(sB(0), sA(0))/ĉ and ε2 =√
2sB(ĉ)/max(sB(0), sA(0)).

Using similar calculations as in the right side equilibria, it is easy
to see that the candidate B’s probability of win is upper bounded by

σ
√

2sB(ĉ)

ĉ
√

max(sA(0),sB(0))
.

The winning probability of candidate A is at-least 1 −
Φ(

σ
√

2sA(ĉ)

ĉ
√

max(sA(0)+sB(0)
) under c−.

5 Stability of Equilibrium Points
In this section we show that the right side equilibrium i.e. c+ is sta-
ble by showing that when the perceived pivotality is different across

voter types, a constant fraction of voters have an incentive to partic-
ipate (or abstain) such that the equilibrium c+ is restored. Note that
c0 is clearly a stable equilibrium since the margin is a near-constant.

Proposition 7. Let cA ≥ ĉ and cB ≥ ĉ be cost thresholds for voters
of type A and B respectively, and perceived pivotality p is given as
p = p(cA, cB) = p(m(cA, cB), n(cA, cB)). Then for any voting
instance I with N voters, the best response of voters is such that
cA = c+ and cB = c+.

c+
⋆

◦
ĉ

A A

p
=
p
+

p
>
p
+

p
<
p
+

cA

c B

Figure 3: A schematic illustation of stability of the equilibrium point
c+. When c′ > c+ is an equilibrium estimate, the A supporters
from right shaded region are incentivized to abstain whereas under
c” < c+ the A supporters from left shaded region are incetivized to
participate.

We provide the intuition of the proof. The detailed proof is given
in Appendix. Notice in equilibrium both types have the same cost
threshold and hence the equilibrium points must be on the line cA =
cB as shown in Figure 3. Suppose first that cA > cB . In this case,
the supporters of A shown in the shaded area (in Figure 3) to the
right of c+ are less pivotal and hence are incentivized to abstain.
Similarly, when cA < cB , the A voters in the shaded region on the
left side of c+ are more pivotal and have an incentive to participate.
The B supporters on the other hand will participate in the first case
and abstain in the second case. Thus, the population of participating
voters adjusts itself (i.e. cA ↓ c+ and sB ↑ c+ when cA > cB and
cA ↑ c+ and sB ↓ c+ when cA < cB) such that the equilibrium c+

is restored.
The left-side equilibrium, on the other, hand may not always be

stable. Consider c” < c− be an equilibrium with cost thresholds cA
and cB with cA < cB . Then, the supporters of B are incentivized
to participate as, with additional participation from supporters of B,
the margin m increases, increasing the probability of win for B. The
supporters of A, on the other hand are also incentivized to participate.
An additional participation from A supporters would mean that m
decreases. Hence stability of c− depends on the relative increase in
the participation from each type of agent.

The emergence of an unstable equilibrium between two stable
ones (one of which is trivial) also occurs e.g. in markets with positive
externalities [8]. In our case externalities behave non-monotonically
(positive under ĉ and negative above but the results are similar.

6 Beyond Linear Support
Our Non-Jury theorem (Theorem 3) immediately extends to any sup-
port functions as long as they are both linear in some environment
of each intersection point ĉ (such as piecewise linear non-decreasing



function), around c1, c2). In case the support functions coincide over
an interval, the same reasoning shows the equilibrium points will
converge to the edges of the interval (see c−3 and c+ in Figure 4).
One caveat though is that N needs to be sufficiently high so that the
equilibria of each intersection point are within its linear environment.

Corollary 8. The Non-Jury theorem holds under the linear margin
PPM for piecewise linear support functions for sufficiently large N .

We further conjecture that any well behaved cost function satisfies
the Non-Jury theorem.

Conjecture 1. The Non-Jury theorem holds for any sufficiently tie-
sensitive PPM satisfying properties 1 and 2 and for any continuous
support functions with bounded second derivative.

By ‘sufficiently tie sensitive’ we mean that the dependency on m
should be strong. E.g. for the tie sensitive PPM, our simulations show
that nontrivial equilibria exist only when α ≥ 0.5.

◦

c−1 c
+
1

◦

c−2 c+2

◦ ◦

c−3 c+3

sB

sA

Figure 4: A schematic illustration of equilibria points with piecewise
linear support functions. The dotted line marks the trivial equilibrium
close to c = 0. We can see there are two nontrivial equilibria on the
sides of each intersection point/interval of the support functions.

7 Inducing Unbiased Participation
In the previous section we saw that allowing everyone to participate
may introduce multiple equilibria, including some where the less-
popular candidate wins with higher probability, and where the prob-
ability of the popular candidate to win is bounded regardless.

We next explore a different idea: instead of allowing everyone to
vote, we sample a sufficiently small group of voters (odd n), such that
they are all guaranteed to perceive themselves as pivotal, and hence
all of them vote. The result is unbiased voting, but with fewer voters.
A small sample size also guarantees unique, stable equilibrium that
favours the popular candidate.

Denote by ε := sA(1) − sB(1), the expected margin under full
participation, so sA(1) = (1 + ε)/2 then n ≤ 1/ε2. We then need
to select sufficiently small n so that p(n, ε) ≥ 1. In the fully rational
models, this can only occur for a single active voter. However under
our tie-sensitive model we have

1 ≤ p(n, ε) = 1/ε
√
n (10)

so any n ≤ 1/ε2 will guarantee participation of the entire sample.
The perceived margin provides sufficient information to bound the
winning probability of popular candidate; independent of the shapes
of support functions.

We now first consider a single round. This already provides us with
a uniform lower bound of 0.84134 on the win probability of A when

the margin ε goes to 0. The number 0.84134 is not coincidental
but is the probability that a standard Normal random variable does
not exceed a single standard deviation (See figure 5). Of course, the
number is sensitive to the parameters of the exact PPM we use (as
are the results in the previous sections), but not to the shapes of the
support functions.

For larger margin, the win probability of A may be either higher
or lower, and this depends mainly on the parity of 1/ε2 (where for
odd numbers it is always higher).

Still, we would like to further improve the winning probability.
One direction (which we do not explore in this work) is to sample a
higher number of voters in an attempt to balance bias and quantity.
Instead, we will explore the possibility of allowing multiple rounds.

µ
n
2

P(B wins) P(A wins)

P(no result) δ

# A votes

P(
v
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e
A
)

Figure 5: The figure illustrates win probability of the popular candi-
date in any given intermediate round. For majority, Pr(A wins) =
0.84134 and similarly for supermajority with margin m×0.3 (shown
by orange color) it is 0.7580 (the red area).

Multi-round voting Note that if we require a supermajority instead
of a majority, the winning probability of A decreases, but not as much
as the winning probability of B (see Fig 5). So in the extreme case,
we could just try again and again until we get a unanimous vote.
However such an extreme approach may substantially alter voters’
behavior, which do not even know the number of rounds. We can
thus limit voting to at most two rounds. Given an expected margin ε:

• Set a supermajority threshold ε′ < ε;
• Sample n = n(ε) voters;
• If the first round ends with a margin at least ε′, the winner is de-

termined and there is no second round;
• Otherwise, we run a second round with n′ = n(ε′) voters and

simple majority.

Note that the chances of the unpopular candidate B winning in either
round are small, as the first round require a supermajority, and the
second round, if occurs, has n′ > n voters.

8 Numerical Study with an Example
Example 3. Suppose sA(c) = 0.1 + c/2 and sB(c) = 0.4. That
is, B has 40% overall support, all of them core supporters and A
has 60% overall support and a fraction of voters are distributed over
cost range [0, 1].

Partial turnout equilibrium

Figure 6 demonstrates the Non-Jury Theorem (Thm. 3), showing that
the winning probability of A in the stable equilibrium c+ is bounded
by β ∼= 0.955, even as the total population size N is increasing.



Interestingly, the winning probability of B behaves differently and
is decreasing towards the c− equilibrium point. Hence B would al-
ways prefer a smaller fraction of the population to vote whereas the
popular candidate prefers a large population to vote.

Varying the PPM parameters Figure 7 shows the win probabil-
ity of candidate A under c+ and for a fixed population size of 106

for different values of α. The larger value of α pushes the equilib-
rium point c+ towards the right, increasing the win probability of
the popular candidate. However, as shown in the blowup box, this
probability is still bounded away from 1.

Unbiased Voting

In order to guarantee full turnout in our example, with its 0.2 margin,
we could sample 25 voters for a winning probability of 0.846.

Two-round voting Suppose we impose a supermajority require-
ment of 14 out of 25 voters (i.e. a margin of 0.12). This means A
is selected in the first round w.p. of ∼ 73%, and with a probability
of 19% will proceed to a second round. However in that case the
realized margin that voters observe is 14−11

25
= 0.12, which means

in the second round we can sample 69 voters that are guaranteed to
vote! Thus A’s winning probability is 95% in the second round and
91% overall. This is still lower than the winning probability in limit
equilibrium (∼ 0.955), but with much fewer voters. Note that thou-
sands of voters are required to reach a 91% winning probability in
equilibrium without sampling.

In Fig. 8 we can see that as we consider instances with smaller
margin, the winning probability of A remains stable under either 1
or 2 rounds (of course,the sample size is increasing). Finally, varying
the α parameter in our PPM shows a curious phenomenon: for α <
1 (meaning that the voters attribute lower weight to the margin in
their estimation), the turnout does not increase high enough and the
winning probability falls for low margins. The exact opposite occurs
for α > 1, thus experimental studies on actual voting behavior could
be crucial for a better understanding of the best mechanism.
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Figure 6: Win probability for different values of N under respective
induced equilibria. The equilibrium win probability for a popular
candidate A increases with N whereas it decreases for the unpop-
ular candidate B.

9 Conclusion
Our results show that under the boundedly rational PPM the equilib-
rium outcome does not guarantee a decisive win for any of the candi-
dates even with an arbitrarily large electorate size. Interestingly, the
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Figure 7: Win probability of candidate A under different values of α
in p(n,m) = min(1, 1

mα
√
N
). The blowup shows that win probabil-

ity is still below 1 for α = 1.25.

Figure 8: Win probability of A and its dependence on α in a two-
round voting with supermajority rule (of margin*0.5) in the first
round and the majority rule in the second round.

proposed model also captures the equilibria induced in fully rational
models (Binomial and Poisson models) as trivial equilibria.

Our boundedly rational model satisfies the property that both can-
didates enjoy almost equal support due to disproportionate abstention
from their supporters. The almost equal support for candidates is a re-
sult of a trade-off between the following two factors; a) the candidate
having majority support among high-cost voters faces more absten-
tion. This increases the winning probability of the unpopular candi-
date against the popular candidate and b) voters are incentivized to
vote depending on how many other voters vote. Hence, when a large
fraction (overall) of voters abstain, the size of the voting population
shrinks increasing pivotality and causing more voters to vote.

The number of votes on the ballot increases with the voting popu-
lation, however, this does not benefit both the candidates equally; dis-
proportionate increase in the support of unpopular candidates leads
to anti-Jury results. It is interesting to see how and if this happens
in practice. We also leave the sensitivity analysis and robustness of
these results as future work. Finally, coming up with a fully rational
model that explains both high turnouts and surprises in large elec-
tions is an interesting future problem.
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