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Abstract. When applied within the domain of computational ethics,
the task of aggregating ordinal preferences raises specific issues. In-
deed, in this case, all ordinal preferences do not have the same status,
depending on whether they are induced by agents or by moral prin-
ciples: for the latter, they should not be contradicted, as this would
compromise the principle’s ability to provide morally satisfying pref-
erences. This paper proposes a definition of compatibility between
ordinal preferences in this context: it imposes that they can be com-
bined into a single fused ordinal preference without performing any
modification to any of them. To assess compatibility of a set of or-
dinal preferences, we prove a theorem that establishes a necessary
and sufficient condition for this definition to hold: we show that it is
equivalent to a modified version of the consistency property proposed
by Suzumura (1976), which applies to a set of preorders. In addition,
we propose an alternative and constructive proof for this property.
This proof allows to define a procedure to determine whether a set
of ordinal preferences is compatible: in the case it indeed holds, it
allows to build a single total preference relation that contains all the
considered preorders, i.e. compatible with all of them.

1 Introduction
Computational ethics, see e.g. [13] for a recent survey, globally aim
at integrating ethical principles into decision-making systems. This
can for instance involve designing systems to solve ethical prob-
lems, or ensuring that a decision-making system complies with ethi-
cal principles. For a given context that describes the state of the world
and specifies a set of feasible decisions, these ethical principles can
be viewed as processes which produce an order on the decisions,
from the most to the least moral ones: they induce moral preferences,
which are formalised as binary relations on a, usually finite, set of de-
cisions.

Preference processing tools can therefore be used for computa-
tional ethics (see e.g. [10]). A common issue addressed by these tools
is the aggregation of preferences, which is a problem found in partic-
ular in computational social choice. The aim is to reach a consensus
between the various expressed preferences, even if it means contra-
dicting some of them in the event of disagreement.

In the case of moral preferences, two types of preference must be
distinguished: those that come from agents and those that come di-
rectly from the principles formalised in computational ethics. The
latter have a special status: contradicting them undermines the prin-
ciple’s ability to provide morally satisfying preferences. This is why
a disagreement between different ethical principles is more important
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than a disagreement between agents, and must be given special atten-
tion. Answering the question of their compatibility is therefore a first
tool is order to determine the extent to which they can be used jointly.
However, as discussed in Section 3, the definition of compatibility is
not so intuitive as it goes beyond the usual properties expected of
binary relations and preferences, as discussed in Section 3.

In this context, we propose a definition of compatibility for sets
of preferences using extensions of binary relations: it requires that it
is possible to combine them without any modification into a single
preference relation. More precisely, a set of preferences is compat-
ible if and only if there exists a total preorder, i.e. a transitive and
total relation, which is an extension of all of them simultaneously.
To assess compatibility of a given set of preferences, we prove the-
orems that establish a necessary and sufficient condition. We prove
that the definition we propose is equivalent to a modified version of
the consistency property proposed by [11], which applies to a set of
preorders and provides a verifiable condition for the compatibility of
a given set of preference relations. We also prove that this compat-
ibility is equivalent to properties involving the union of the initial
preferences. Thus, this compatibility corresponds to the case where
the union is a satisfactory aggregation operator: a rare case in compu-
tational social choice as incompatibilities are assumed to exist among
the considered preference relations.

Finally, in the case the considered ethical principles apply to fi-
nite sets of decisions, we propose an alternative proof without us-
ing Suzumura’s theorems [11] by proposing the construction of a
total preorder that is an extension of the preferences. The construc-
tion is decomposed into four steps. For the fourth one, we discuss
the characteristics of various possible constructions, based on graph
algorithms such as topological sort [9] or the longest path layering
algorithm [3, 6]. We argue that the latter is more suited in an ethical
context. Furthermore, we consider additional constraints that impose
specific conditions that the extension must satisfy. These constraints
reduce the space of preorders that are total extensions of the initial
relations. As in the general case, we use the four steps to propose a
proof by construction.

The paper is structured as follows: Section 2 recalls the formalisa-
tion of preferences, binary relations and properties used in the paper.
Section 3 describes the proposed definition of compatibility and es-
tablishes a necessary and sufficient condition, using a modified ver-
sion of Suzumura’s definition of consistency. Section 4 presents the
four proposed steps to establish an alternative and constructive proof
for the sufficiency of the condition. Section 5 considers additional
constraints to compatibility and shows that the four steps can be used
to determine which conditions need to be added to satisfy these con-
straints.



2 Preferences, Binary Relations and Properties
Preferences have been studied and formalised logically since the 20th
century by philosophers, economists and mathematicians. This sec-
tion recalls the usual formalism associated with binary relations and
presents the consistency property proposed by Suzumura [11].

2.1 Background

Let D be a non-empty and finite set of decisions and R a binary re-
lation on D. R can be seen as a subset of D2: in the following, the
notations (x, y) ∈ R and xRy are used interchangeably. As is usual
when handling preferences, the symmetric part of R is denoted I(R)
for indifference, even if we use in the paper the equivalent term of
equivalence. The asymmetric part of R is denoted P (R) for prefer-
ence. It holds that R = I(R) ∪ P (R).

I(R) = {(x, y) ∈ D2 | (x, y) ∈ R ∧ (y, x) ∈ R}

P (R) = {(x, y) ∈ D2 | (x, y) ∈ R ∧ (y, x) /∈ R}

Therefore a single binary relation R is sufficient to handle both
equivalence and preference. A relation is said to be symmetric (resp.
asymmetric), if its asymmetric (resp. symmetric) part is empty. Other
common properties include, for all x, y, z in D2:

xRx (reflexive)

xRy ∧ yRz ⇒ xRz (transitive)

x ̸= y ⇒ xRy ∨ yRx (connected)

When a relation is both reflexive and connected, it is said to be
complete. A strict order is a binary relation that is asymmetric and
transitive. A preorder is a binary relation that is reflexive and transi-
tive. It can be understood as an order that allows ties between deci-
sions. It is therefore the most used binary relation to represent pref-
erences. A preorder is often denoted ≿, where ∼ and ≻ are respec-
tively its symmetric and asymmetric parts. If an order or a preorder
is connected, it is qualified as total, and if not as partial.

A path in a binary relation R is denoted xR+y. There is a path
from x to y if either xRy or ∃m ≥ 1, ∃a1, . . . , am ∈ D such that
xRa1R . . . RamRy. A binary relation is acyclic if there is no path
from a decision to itself. Besides, the inverse of a relation is noted
R−1 = {(y, x) ∈ D2 | (x, y) ∈ R}.

Three more concepts are used in the paper. Firstly, a relation R ad-
mits a PR-cycle if ∃x, y ∈ D such that xP (R)yR+x. In other words,
it contains a cycle involving at least one asymmetrical comparison.

Secondly, the extension of a binary relation is defined as fol-
lows: τ is an extension of R if R ⊆ τ and P (R) ⊆ P (τ). As
R = I(R) ∪ P (R) we also get I(R) ⊆ I(τ). Note that this def-
inition of extensions considers that the symmetric and asymmetric
parts must be preserved. This property is necessary when manipulat-
ing preferences, as these two parts have a different meaning. Ext(R)
denotes the set of extensions of R and TExt(R) the set of total ex-
tensions, i.e. extensions that are total preorders.

Thirdly, the transive closure of a binary relation, denoted tCl(R),
is the smallest relation on D that contains R and is transitive. It
is therefore contained in all transitive relations S that contain R:
R ⊆ S ⇒ tCl(R) ⊆ S. All binary relations have a transitive clo-
sure. It is useful to note that (x, y) ∈ tCl(R) ⇔ xR+y.

2.2 Suzumura’s Consistency

The main contribution of this paper is based on a property pro-
posed by Suzumura [11] that we denote S-consistency, since differ-

ent properties are also referred to as consistency by other authors.
S-consistency is based on the absence of PR-cycles of any order.

Definition 1 (S-consistency).
R is S-consistent iff R contains no PR-cycles.

This property is used in a variety of contexts as discussed
in more details in [1, 7, 2]. It is weaker than transitivity,
transitivity ⇒ S-consistency, while being stronger than acyclicity of
the asymetric part. It has also been shown that, in case of complete-
ness, S-consistency is equivalent to transitivity. It was introduced by
Suzumura as a condition for the existence of an extension that is a
total preorder.

Theorem 1 (Suzumura, Theorem 3 in [11]).
R is S-consistent ⇔ TExt(R) ̸= ∅.

This theorem answers the question whether a given relation has a
total extension. It lies in a group of studies that propose conditions
for the existence of an extension. They are all based on Szpilrajn’s
fundamental theorem that establishes that all partial orders can be ex-
tended to a total order [12]. Hansson [5] proves that partial preorders
all have a total extension. These two proofs are detailed and thus self-
contained in Fishburn [4] and then used by Suzumura to prove the
theorem. Therefore, as it establishes an equivalence, S-consistency is
the weakest condition to the existence of an extension.

3 Proposed Definition for Preorder Compatibility
Let us consider n preorders R1, . . . , Rn ∈ D2 that correspond to
preferences from different sources. We propose a definition of com-
patibility and a necessary and sufficient condition for it to hold. This
condition is a modified version of S-consistency that applies to the
set of preorder R1, . . . , Rn. The definition of compatibility is:

Definition 2 (Compatibility between preorders).
Preorders R1, . . . , Rn are compatible iff

⋂n
i=1 TExt(Ri) ̸= ∅.

This means that R1, . . . , Rn are compatible if and only if there
exists at least one extension that is shared by all preorders and is
a total preorder. As the extension is shared, compatibility involves
the ability to combine the preorders in a single relation that satis-
fies the properties desirable for preferences. As discussed below, it
implies that for a given D, the union is a satisfactory aggregator on
R1, . . . , Rn. Conversely, when the preorders are not compatible, it
shows that a more complex aggregation procedure is needed to pro-
duce satisfactory preferences. In the case of ethical principles, this
may involve restricting their application or simply rejecting them as
unsatisfactory.

In the rest of this section, we propose a necessary and sufficient
condition for compatibility, so as to avoid having to generate the set
of extensions for each preorder to check compatibility. Doing so also
provides some insight on the reason why the union is a satisfactory
aggregator when the preorders are compatible. We show that the pro-
posed definition of compatibility is related to S-consistency. For the
sake of legibility, let us denote

⋃
r =

⋃n
i=1 Ri,

⋃
pr =

⋃n
i=1 P (Ri)

and
⋃

ir =
⋃n

i=1 I(Ri).

Theorem 2. The preorders R1, . . . , Rn are compatible

⇔

{
(A) ∀x, y ∈ D, ∀j, k, (x, y) ∈ P (Rj) ⇒ (y, x) /∈ Rk

(B) TExt(
⋃

r) ̸= ∅

To prove this theorem, we use the following lemma



Lemma 3. (A) ⇔
⋃

pr ⊆ P (
⋃

r)

Proof. ⇒ Let us choose (x, y) ∈
⋃

pr , thus ∃j ∈ [[1, n]] such
that (x, y) ∈ P (Rj). We know that ∀k ∈ [[1, n]], (y, x) /∈ Rk, thus
(y, x) /∈

⋃
r . Now (x, y) ∈

⋃
r and thus (x, y) ∈ P (

⋃
r)

⇐ Let us choose (x, y) ∈ P (Rj). We have (x, y) ∈
⋃

pr and so
we deduce (x, y) ∈ P (

⋃
r). Thus, (y, x) /∈

⋃
r

Proof of Theorem 2. Necessity ⇒: Let us suppose that ∃τ ∈ D2,
τ ∈

⋂n
i=1 TExt(Ri), which means that ∀i ∈ [[1, n]], Ri ⊆ τ ∧

P (Ri) ⊆ P (τ).
Let us prove (A) using Lemma 3. We consider (x, y) ∈ D2 such

that (x, y) ∈
⋃

pr . Thus (x, y) ∈
⋃

r . It is then sufficient to show that
(y, x) /∈

⋃
r . Let us choose j ∈ [[1, n]] such that (x, y) ∈ P (Rj).

Knowing that P (Rj) ⊆ P (τ), we get (x, y) ∈ P (τ), which gives
(y, x) /∈ τ . As Ri ⊆ τ , we get (y, x) /∈

⋃
r .

Let us prove (B). Let us take τ ∈
⋂n

i=1 TExt(Ri) and prove
that τ is an extension of

⋃
r: we only have to prove P (

⋃
r) ⊆ P (τ)

since by definition of
⋂n

i=1 TExt(Ri) we know
⋃

r ⊆ τ . Let us
choose (x, y) ∈ P (

⋃
r), thus (x, y) ∈

⋃
r and (y, x) /∈

⋃
r . There-

fore ∃Rj such that (x, y) ∈ Rj and that (x, y) ∈ P (Rj). Knowing
that τ ∈ TExt(Rj), (x, y) ∈ P (τ). We have P (

⋃
r) ⊆ P (τ) thus

τ is an extension of
⋃

r . Furthermore τ is a total preorder by defini-
tion of TExt(Ri). Thus τ ∈ TExt(

⋃
r).

Sufficiency ⇐: Let us suppose (A) and (B). With (B), let us take
σ ∈ TExt(

⋃
r), thus we have

⋃
r ⊆ σ and ∀i ∈ [[1, n]], Ri ⊆ σ. We

must prove that ∀i ∈ [[1, n]], P (Ri) ⊆ P (σ). Let us choose (x, y)
and Rj such that (x, y) ∈ P (Rj). Therefore, (x, y) ∈

⋃
pr . With

(A) and Lemma 3, we get (x, y) ∈ P (
⋃

r). Knowing by (B) that
P (

⋃
r) ⊆ P (σ), we get (x, y) ∈ P (σ).

This theorem makes explicit the link between compatibility and
the fact that the union is a satisfactory aggregator. Indeed, the two
conditions (A) and (B) identify the two possible cases of incompat-
ibility for the union. (A) is used to generalise the asymmetry to a
group of relations. This prohibits all PR-cycles of size two between
relations. On the other hand (B) is equivalent to S-consistency and
ensures that there are no PR-cycles of size strictly greater than two
between the relations. Indeed by decomposing the union into its sym-
metrical and asymmetrical part, S-consistency cannot detect cases of
cycles of size two as they are then considered as equivalence. It is
easily shown by considering xR1y and yR2x. Indeed, in that case
(x, y), (y, x) ∈

⋃
pr but (x, y), (y, x) ∈ I(

⋃
r). Finally, using this

theorem, we prove that the compatibility we propose is equivalent to
a slightly modified version of the S-consistency property for a set of
binary relations, denoted (Q).

Proposition 4. The preorders R1, ..., Rn are compatible ⇔
∀x, y ∈ D, x

⋃+
r y ⇒ (y, x) /∈

⋃
pr (Q)

Proof. ⇒ By Theorem 2 we know (B) and with Theorem 1 that⋃
r admits no PR-cycle. It implies that ∀x, y ∈ D, x

⋃+
r y ⇒

(y, x) /∈ P (
⋃

r). With (A) and Lemma 3, we get
⋃

pr ⊆ P (
⋃

r)

and thus ∀x, y ∈ D, x
⋃+

r y ⇒ (y, x) /∈
⋃

pr .
⇐ If x

⋃
r y this implication is a rewriting of the contraposition

of (A). Knowing (A) and Lemma 3, we get (x1, x2) ∈ P (
⋃

r). Thus⋃
r does not admit PR-cycles, and with Theorem 1, we deduce (B).

Finally, with Theorem 2, we get that R1, ..., Rn are compatible.

The proposed modification of S-consistency lies only in consider-
ing that the asymmetric comparison must be in an asymmetric part
of one Ri,

⋃
pr =

⋃n
i=1 P (Ri), rather than on the asymmetric part

of the union P (
⋃

r) = P (
⋃n

i=1 Ri).
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Figure 1. (Left) Three considered preorders R1 (red dotted arrows), R2

(green densely dotted arrow) and R3 (blue full arrows). (Right) necessary
equivalence classes

4 Constructive Proof without Suzumura’s theorem
All the proofs about the existence of extensions presented in the pre-
vious sections consider an infinite set of decisions and thus use the-
oretical mathematical tools to handle infinity (see [8], pages 31-36).
We propose here an alternative and constructive proof. To construct
a compatible preorder, it assumes that the set of decisions is finite,
which represents a significant part of the decision-making problems,
especially those considered in computational ethics. The sufficiency
of the condition is proved by constructing a total preorder that be-
longs to

⋂n
i=1 TExt(Ri). In the following four subsections, we de-

scribe in turn four steps used to construct this preorder. The first two
steps determine the equivalences and preferences that are necessar-
ily required to satisfy the transitivity of a compatible preorder. In the
third step, these comparisons are combined to build a preorder, which
is then extended into a total preorder in the final step. One particular
extension is proposed for an ethical context. The steps are illustrated
considering the example shown on the left part of Figure 1: for the set
of decisions D = {a, b, c, d, e, f, g, h}, three preorders R1, R2 and
R3 are considered.

4.1 Determining Necessary Equivalences

The aim of the first step is to determine the set of equivalences,
denoted N∼, which are necessarily required in the extension. To
show that they are necessary, we need to prove that the compati-
bility of R1, . . . , Rn implies ∀τ ∈

⋂n
i=1 TExt(Ri), N∼ ⊆ I(τ).

In this step and the next one only, we therefore assume that the
preorders R1, . . . , Rn are compatible and we note τ an element of⋂n

i=1 TExt(Ri).

Proposition 5. τ ∈
⋂n

i=1 TExt(Ri) ⇒ tCl
(⋃

ir

)
⊆ I(τ)

Proof. By definition of
⋂n

i=1 TExt(Ri), we know that τ is a ex-
tension of all Ri, and thus

⋃
ir ⊆ I(τ). Knowing that τ is a total

preorder, I(τ) is reflexive, symmetric and transitive. The closure be-
ing minimal, tCl

(⋃
ir

)
⊆ I(τ).

Thus we note N∼ = tCl
(⋃

ir

)
. The union and the transitive clo-

sure preserve the reflexivity and symmetry of I(Ri), so N∼ is an
equivalence relation on D. Therefore it decomposes D into equiv-
alence classes. The equivalence classes for the illustrative example
with R1, R2, R3 are represented in the right part of Figure 1.

4.2 Determining Necessary Preferences

In the same spirit, the set of preferences that are necessarily present
in the extension is denoted N≻. The aim is to prove that the compat-
ibility of R1, . . . , Rn implies ∀τ ∈

⋂n
i=1 TExt(Ri), N≻ ⊆ P (τ).
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Figure 2. (Left) necessary preferences, where black and dashed arrows
represent the added preferences. (Right) ≻C, projection of the necessary

preferences on the equivalence classes.

Proposition 6. τ ∈
⋂n

i=1 TExt(Ri) ⇒
∀x, y ∈ D,

[
∃a, b ∈ D, x

⋃+
r a

⋃
pr b

⋃+
r y

]
⇒ (x, y) ∈ P (τ)

Proof. Assume ∃a, b ∈ D, x
⋃+

r a
⋃

pr b
⋃+

r y. Knowing
τ ∈

⋂n
i=1 TExt(Ri), which means

⋃
r ⊆ τ and

⋃
pr ⊆ P (τ), we

get x τ+aP (τ)b τ+y. By transitivity, we get (x, y) ∈ τ . Let us sup-
pose ad absurdum that (y, x) ∈ τ , then b τ+a and by transitivity
(b, a) ∈ τ . As (a, b) ∈ P (τ), it is absurd.

We note N≻ = {(x, y) ∈ D2 | ∃a, b ∈ D, x
⋃+

r a
⋃

pr b
⋃+

r y}.
For the considered illustrative example, the necessary preferences
that are added to R1, R2, R3 by the closure are represented by
the black and dashed arrows in Figure 2. As each R1, . . . , Rn is
reflexive, so is

⋃
r . Therefore for all (x, y) in

⋃
pr it holds that

x
⋃

r x
⋃

pr y
⋃

r y and thus (x, y) is in N≻. This establishes that⋃
pr ⊆ N≻. Moreover, N≻ is transitive and asymmetric under the

considered condition.

Proposition 7. N≻ is transitive and [(Q) ⇒ N≻asymmetric].

Proof. Transitivity: let us suppose that ∃x, y, z ∈ D such that
xN≻y and yN≻z. By definition of N≻, ∃a, b, c, d ∈ D such that
x
⋃+

r a
⋃

pr b
⋃+

r y
⋃+

r c
⋃

pr d
⋃+

r z. Knowing that
⋃

pr ⊆
⋃

r ,
a
⋃

r b, thus x
⋃+

r c
⋃

pr d
⋃+

r z, therefore (x, z) ∈ N≻.
Asymmetry: let us suppose that ∃x, y ∈ D such that (x, y) ∈ N≻.

Ad absurdum, assume that (y, x) ∈ N≻. By transitivity of N≻, it
holds that (x, x) ∈ N≻. By definition of N≻, ∃a, b ∈ D such that
x
⋃+

r a
⋃

pr b
⋃+

r x. Therefore we get b
⋃+

r a. Using (Q), it holds
that (a, b) /∈

⋃
pr , which is absurd.

4.3 Building a Preorder

The goal of this step is to use the necessary comparisons defined
previously in order to build a preorder that is an extension of all
R1, . . . , Rn, i.e. that is an element of

⋂n
i=1 Ext(Ri). The following

theorem makes explicit all the conditions that an equivalence relation
and a strict order must satisfy so that their union is such an extension.

Theorem 8. Let us consider ≻,∼ ⊆ D2 such that ≻ is a strict order
and ∼ is an equivalence relation. Then it holds that:

⋃
pr ⊆ ≻⋃
ir ⊆ ∼

≻ ∩ ∼ = ∅
⇒ (≻ ∪ ∼) ∈

⋂n
i=1 Ext(Ri)

Proof. Let us take i ∈ [[1, n]]. We have to prove that Ri ⊆ (≻ ∪ ∼)
and P (Ri) ⊆ P (≻ ∪ ∼). As it is assumed that

⋃
pr ⊆ ≻ and

⋃
ir ⊆ ∼, it holds that P (Ri) ⊆ ≻ and I(Ri) ⊆ ∼. Thus

I(Ri) ∪ P (Ri) ⊆ (≻ ∪ ∼): Ri ⊆ (≻ ∪ ∼) holds. By union,
P (Ri) ⊆

⋃
pr , let us prove P (≻ ∪ ∼) =≻. We know that ≻ is

asymmetric and that ∼ is symmetric. Furthermore, as ≻ ∩ ∼ = ∅,
for each (x, y) ∈≻, we know that (y, x) /∈ (≻ ∪ ∼). Thus
P (≻ ∪ ∼) =≻. We get P (Ri) ⊆

⋃
pr ⊆ ≻= P (≻ ∪ ∼).

As such (≻ ∪ ∼) is an extension of Ri and as the same reasoning
applies for any i ∈ [[1, n]], it holds that ≿ ∈

⋂n
i=1 Ext(Ri).

As we want to apply this theorem to the necessary comparisons
introduced in the previous sections, the following proposition estab-
lishes that N∼ ∩N≻ = ∅. Indeed it has already been shown that N∼
is an equivalence relation and by definition of the transitive closure,
it holds that

⋃
ir ⊆ N∼ . Similarly for N≻, Proposition 7 establishes

that it is a strict order and
⋃

pr ⊆ ≻.

Proposition 9. (Q) ⇒ N∼ ∩N≻ = ∅

Proof. Assume, ad absurdum, (x, y) ∈ N∼ and (x, y) ∈ N≻. By
definition of N≻, ∃a, b ∈ D, such that x

⋃+
r a

⋃
pr b

⋃+
r y. More-

over, we get (y, x) ∈ N∼ by symmetry of N∼, thus by defini-
tion of the transitive closure y

⋃+
ir x. Knowing that

⋃
ir ⊆

⋃
r , it

holds that y
⋃+

r x. Therefore, we get b
⋃+

r a. By applying (Q) we
get (a, b) /∈

⋃
pr , which is absurd.

All the conditions of Theorem 8 are satisfied by N∼ and N≻.
Thus it establishes that (N∼ ∪N≻) ∈

⋂n
i=1 Ext(Ri). Let us note

≿= N∼ ∪ N≻. Therefore ≿ is an extension of all R1, . . . , Rn. To
conclude this step, let us prove that ≿ is a preorder.

Proposition 10. ≿ is transitive and reflexive.

Proof. As N∼ is reflexive, so is ≿. To prove that it is also transitive,
let us assume that ∃x, y, z ∈ D such that (x, y), (y, z) ∈ ≿. Four
cases are distinguished:
- (x, y), (y, z) ∈ N∼: Then by transitivity of N∼ it holds that
(x, z) ∈ N∼ and thus (x, z) ∈ ≿.

- (x, y), (y, z) ∈ N≻: Then by transitivity of N≻ it holds that
(x, z) ∈ N≻ and thus (x, z) ∈ ≿.

- (x, y) ∈ N∼ and (y, z) ∈ N≻: As N∼ is a transitive closure,
it holds that x

⋃+
ir y and thus, as

⋃
ir ⊆

⋃
r , x

⋃+
r y. Moreover,

by definition of N≻, it holds that ∃a, b ∈ D, y
⋃+

r a
⋃

pr b
⋃+

r z.
Linking the two, we get x

⋃+
r a

⋃
pr b

⋃+
r z. By definition of N≻,

it gives us (x, z) ∈ N≻ and thus (x, z) ∈ ≿.
- (x, y) ∈ N≻ and (y, z) ∈ N∼: the reasoning of the previous

case give us (x, z) ∈ ≿.
In all cases, it holds that (x, z) ∈ ≿, therefore ≿ is transitive.

4.4 Extending the Preorder

Having demonstrated that ≿ is a preorder and an extension of
R1, . . . , Rn, the final step extends it into a total preorder. To that aim,
we first exploit a topological sort [9] to provide a proof by construc-
tion of Theorem 11 of Hansson (Lemma 3 in [5]). Then we argue that
the longest path algorithm [3, 6] provides an alternative construction
which is more relevant in an ethical context.

Theorem 11 (Hansson, 1968). Let R be a preorder, TExt(R) ̸= ∅.

I(R) is an equivalence relation on D. It decomposes D into a finite
number of equivalence classes, the set of which is denoted C. To
simplify the notation, we consider the projection of P (R) on C:

≻C= {(C1, C2) ∈ C2 | ∃x, y ∈ D, x ∈ C1, y ∈ C2, xP (R)y}
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Figure 3. (Left) identification of maximal equivalence classes, shown as
circled nodes; (Right) an ordering using a topological sorting algorithm

This projection is illustrated in Figure 2. Finding a total exten-
sion of R is equivalent to finding a layering of the directed graph
associated with ≻C. This involves the assignment of all the equiv-
alence classes to a layer. The layers are denoted L0, . . . , Ll. On
a given layer, all decisions are considered equivalent and those as-
signed to a higher layer (i.e. with greater index) are regarded as less
preferable. Layer L0 represents the preferred decisions and Ll the
least preferred ones. For a layering to satisfy ≻C, it must verify that
∀(Ca, Cb) ∈≻C, [Ca ∈ Lc ∧ Cb ∈ Ld ⇒ c < d].

To build such a layering, ≻C must be acyclic. It is proved in the
following proposition:

Proposition 12. ≻C is acyclic

Proof. Assume, ad absurdum, ∃C1, . . . , Cm ∈ C such that
C1 ≻C · · · ≻C Cm ≻C C1. Then ∃a1, . . . , am, b1, . . . , bm ∈ D
such that (∀ai, bi ∈ Ci), (∀i ∈ [[1,m − 1]], aiP (R)bi+1)
and (amP (R)b1). Knowing that ai, bi ∈ Ci, it holds that
biI(R)ai, thus biRai. Moreover, as P (R) ⊆ R, it implies
b1Ra1Rb2R . . . RbmRam, i.e. b1R+am and by transitivity of R
we get b1Ram. This is absurd as amP (R)b1.

Once acyclicity is verified, a topological sort [9] of the directed
graph can be performed. This layering approach assumes that all lay-
ers are composed of a single equivalence class. It represents a total
preorder on D that is an extension of R, thus it proves Theorem 11.

However, we argue that this construction is not satisfying in
an ethical context. To explain why, let us take a closer look at
the set of equivalence classes that are not dominated for ≻C:
max≻C = {C ∈ C | ∀C′ ∈ C, (C′, C) /∈ ≻C}. The elements of
max≻C are called maximal equivalence classes. They are identified
in Figure 3 with circled nodes. The topological ordering depicted in
Figure 3 introduces preferences that are not justified ethically: deci-
sions a and b are preferred to d and g. We argue that the introduction
of arbitrary preferences among maximal equivalence classes is prob-
lematic if the preorder is used in a ethical decision analysis context,
as it can favour decisions on an unethical basis.

Thus, in the remainder of this section, we put forth an ethical inter-
pretation of an alternative layering, induced by the longest path algo-
rithm [3, 6]. As represented in Figure 4, each decision is assigned to
the layer whose index is the size of the longest path to a decision be-
longing to a maximal equivalence class. Denoting l(x, y) the length
of the path between x and y in the built directed graph ≻C, the size
of the longest path from a decision x to a decision belonging to a
maximal equivalence class is formally defined as

d≻C(x) =

{
0 if x ∈ Cx ∧ Cx ∈ max≻C

max{lpath(x, y)|y ∈ Cy, Cy ∈ max≻C} otherwise

L0

L1

L2

a

b

cf

dg

e h

Figure 4. The ordering induced by the longest path layering algorithm

The highest layer is labelled with l = maxx d≻C(x), the size of
the longest path within ≻C. We assign to each decision one layer of
L0, . . . , Ll ⊆ D according to the size of their longest path to a max-
imal equivalence class: Li = {x ∈ D | d≻C(x) = i}. These layers
form a total extension of the strict order ≻C and therefore a total
preorder of D, denoted R⋆:

R⋆ = {(x, y) ∈ D | x ∈ Li ∧ y ∈ Lj ∧ i ≤ j}

As with a topological sort, the longest path algorithm enables us to
prove the following proposition, which is also a proof of Theorem 11:

Proposition 13. R⋆ is a total preorder and R⋆ ∈ Ext(R)

This layering always locates the maximal equivalence classes in
the preferred layer L0: it introduces equivalence comparisons be-
tween them. Thus, it preserves the fundamental characteristic of
these decisions: they are not dominated. By doing so, any decision-
making process is less susceptible to be influenced by unethically
justified preferences, among this preferred decisions.

This layering also provides an interesting information for the deci-
sions which are not in a maximal equivalence class. Indeed, the layer
of the decision indicates the extent to which the agent has deviated
from an optimal ethical decision. For instance, decision e is in layer
L2: according to all the considered principles, one could have per-
formed a better decision twice. Therefore as depicted in Figure 4,
the layering is an effective representation and thus gives a clear un-
derstanding of the ethical relations between the decisions in case of
compatibility.

One must note that this layering introduces new preferences: h is
e.g. preferred to c and f . However, it never adds them among the
maximal equivalence classes and these preferences only indicate that
h is less far away from a optimal ethical decision than c or f . As such
it must not be conflated with a genuine ethical preference inferred by
a principle. Indeed, h could actually be worse than c, for other ethical
reasons, not included in the currently considered principles. This lay-
ering is only inferred from the considered principles, therefore it will
provide more satisfying information if these principles encompass all
the ethical components of the given problem.

5 Adding More Constraints to R1, . . . , Rn

In the previous sections, we proposed a definition of compatibility
for a set of preference relations R1, . . . , Rn as well as four steps to
construct an extension. In this section, we show that if one wants to
add constraints in addition to the preferences, the four proposed steps
are applicable and facilitate the determination of new conditions for
compatibility. To illustrate this, we define two constraints before ap-
plying the steps.



5.1 Adding Constraints

As constraints, let us consider other types of comparisons that can
be qualified as unsure. We avoid the term uncertainty as it is more
scientifically connoted. The constraints we consider are meant to
illustrate the efficiency of the steps and not to propose a precise
formalisation of ethical principles under uncertainty. The first un-
sure comparison defines the weak preferences, at least as good as,
and is denoted W ∈ D2. This relation is unsure as it does not
distinguish strict preferences from equivalences. W must be distin-
guished from any R1, . . . , Rn which are only relations that allow
to manipulate well-defined preferences and equivalences together:
Ri = P (Ri) ∪ I(Ri). The second unsure comparison is a differ-
ence relation, denoted D ∈ D2, which, in a similar way to W , is not
able to distinguish a strict preference from its inverse. If we consider
that there are only three comparisons between objects, namely better
than, equivalent to and worse than, these unsure comparisons can be
seen as negative constraints: xWy means that y is not better than x
and xDy that x is not equivalent to y.

To propose a formal definition of compatibility with these new
constraints, let us first define them:

Definition 3 (Satisfiability of W ).
W is satisfied by τ ∈ D2, iff W ⊆ τ (= I(τ) ∪ P (τ))

Definition 4 (Satisfiability of D).
D is satisfied by τ ∈ D2, iff D ⊆ P (τ) ∪ P (τ)−1.

Definition 5 (Compatibility with constraints).
R1, . . . , Rn, W and D are compatible ⇔ ∃τ ∈

⋂n
i=1 TExt(Ri)

such that W and D are satisfied by τ .

5.2 Determining Necessary Equivalences

As before, we assume that the preorders R1, . . . , Rn,W and D
are compatible, thus we note τ an element of

⋂n
i=1 TExt(Ri)

that satisfies W and D. W is going to extend the set of neces-
sary equivalence but not D, as it can be seen as a negation of
equivalence. To improve legibility, let us note T =

⋃
ir ∪W and

C∼ = {(x, y) ∈ D2 | xT+yT+x} the set of pairs of D that are in
a cycle of T .

Proposition 14.
R1, . . . , Rn, W and D are compatible ⇒ C∼ ⊆ I(τ).

Proof. As compatibility is assumed, ∃τ ∈
⋂n

i=1 TExt(Ri)
such that W , D are satisfied by τ . Let us consider a cycle
(xTa1T . . . TamTyTb1T . . . T bpTx) and two decisions in this cy-
cle, zi and zj . Knowing that τ satisfies W : W ⊆ τ . Moreover, by
definition of

⋂n
i=1 TExt(Ri), ∀i ∈ [[1, n]], I(Ri) ⊆ τ . Thus this is

also a cycle on τ . By transitivity of τ , it holds that both ziτzj and
zjτzi. Thus, (zi, zj) ∈ I(τ).

Let us denote N ′
∼ the transitive closure of these necessary equiv-

alences: N ′
∼ = tCl

(⋃
ir ∪C∼

)
. As I(τ) is transitive by definition

and
(⋃

ir ∪C∼
)
⊆ I(τ) and as the transitive closure is minimal, we

get N ′
∼ ⊆ I(τ). Moreover, the union and the transitive closure pre-

serve the reflexivity and symmetry of I(Ri) and C∼, so N∼ is an
equivalence relation on D.

5.3 Determining Necessary Preferences

Necessary preferences are slightly more complex as both
W and D add necessary preferences. For legibility, let us

note U =
⋃

r ∪W and Upr =
⋃

pr ∪(W ∩D). We then define
N ′

≻ = {(x, y) ∈ D2 | ∃a, b ∈ D, xU+aUprbU
+y}.

Proposition 15.
R1, . . . , Rn, W and D are compatible ⇒ N ′

≻ ⊆ P (τ)

Proof. Assume ∃x, y, a, b ∈ D, xU+aUprbU
+y. Know-

ing that R1, . . . , Rn, W and D are compatible, it holds that
τ ∈

⋂n
i=1 TExt(Ri), which means that

⋃
r ⊆ τ and

⋃
pr ⊆ P (τ).

As τ satisfies W and D, it holds that W ⊆ τ . Moreover,
W ∩D ⊆ τ ∩

(
P (τ) ∪ P (τ)−1

)
. By definition of the inverse of an

asymmetric part τ ∩ P (τ)−1 = ∅, thus we get W ∩ D ⊆ P (τ).
Therefore U ⊆ τ and Upr ⊆ P (τ). We get x τ+aP (τ)b τ+y. By
transitivity, we get (x, y) ∈ τ . Ad absurdum, let us suppose that
(y, x) ∈ τ , therefore b τ+a and by transitivity (b, a) ∈ τ , which is
absurd knowing (a, b) ∈ P (τ). This proves (x, y) ∈ P (τ).

Proposition 16. N ′
≻ is transitive

Proof. This proposition is proved as Proposition 7.

5.4 Building a Preorder

To be able to apply Theorem 8, two prerequisites are missing: the
asymmetry of N ′

≻ and the fact that N ′
∼ ∩ N ′

≻ = ∅. Both are
therefore defined as conditions in order to prove that R1, . . . , Rn,
W and D are compatible. Thus using Theorem 8 and by denoting
≿′= N ′

∼ ∪N ′
≻ it holds that ≿′∈

⋂n
i=1 Ext(Ri).

Proposition 17. ≿′ is transitive and reflexive.

Proof. As N ′
∼ is reflexive, so is ≿′. To prove that it is also transitive,

let us assume that ∃x, y, z ∈ D such that (x, y), (y, z) ∈ ≿′. Four
cases are distinguished:
- (x, y), (y, z) ∈ N ′

∼: Then by transitivity of N ′
∼ it holds that

(x, z) ∈ N ′
∼ and thus (x, z) ∈ ≿′.

- (x, y), (y, z) ∈ N ′
≻: we get (x, z) ∈ ≿′ with the same reasoning.

- (x, y) ∈ N∼ and (y, z) ∈ N≻: By definition of the closure,
it holds that x(

⋃
ir ∪C∼)

+y. Knowing that aC+
∼b means that

aT+bT+a, with T =
⋃

ir ∪W . Knowing that U =
⋃

r ∪W
and

⋃
ir ⊆

⋃
r , it holds that C∼ ⊆ U . Thus, (

⋃
ir ∪C∼) ⊆ U

it holds that xU+y. Moreover, by definition of N ′
≻, it holds

that ∃a, b ∈ D, yU+aUprbU
+z. Linking the two, we get

xU+aUprbU
+z. By definition of N ′

≻, it gives us (x, z) ∈ N ′
≻

and thus (x, z) ∈ ≿′.
- (x, y) ∈ N ′

≻ and (y, z) ∈ N ′
∼: the reasoning of the previous

case give us (x, z) ∈ ≿′.
In all cases, it holds that (x, z) ∈ ≿′, therefore ≿′ is transitive.

5.5 Extending the Preorder

To extend the preorder, this section uses the layering algorithms in-
troduced in Section 4. They must here ensure that W and D are sat-
isfied. As this section intends to illustrate the efficiency of the steps
when considering constraints, the layering introduces preferences in-
stead of equivalences in order to satisfy W and D, which is a conve-
nient choice, but not the only possible one.

As all cycles of W are in N ′
∼ by its construction, the part of W

outside of the equivalence classes is acyclic. Besides, as N ′
≻ is sup-

posed to be asymmetric, N ′
≻ ∪ W is acyclic by construction of N ′

≻.
Therefore all equivalence classes can be layered according to

N ′
≻, using the longest path algorithm. These layers are denoted

K1, . . . ,Kd. Then among each layer, a topological sort is applied



to sort the equivalence classes to ensure the satisfiability of the con-
straints. The final layers correspond to an indexation of all classes,
denoted C1, . . . , Ce. Formally we have that ∀k ∈ [[1, d]], ∀a, b ∈ Kk

such that a ∈ Ci, b ∈ Cj and i ̸= j, it holds that (aWb ⇒ i < j).
This construction enables us to propose the following extension:

≿′⋆= {(x, y) ∈ D | x ∈ Ki, Cj ∧ y ∈ Kk, Cl∧
[(i < k) ∨ (i = k ∧ j ≤ l)]}

Four properties must be proven for ≿′⋆: ≿′⋆ is a total preorder,
≿′⋆∈ Ext(≿′) (thus ≿′⋆∈

⋂n
i=1 TExt(Ri)), ≿′⋆ satisfy W and

≿′⋆ satisfy D.

Proposition 18. ≿′⋆ is a total preorder

Proof. Let us prove that it is complete. Let us consider (x, y) ∈ D2.
By the decomposition into equivalent classes, ∃j, l ∈ [[1, e]] such
that x ∈ Cj and y ∈ Cl. By construction of K1, . . . ,Kd, we get
∃i, k ∈ [[1, d]] such that x ∈ Ki and y ∈ Kk. Therefore, either i ̸= k
and if i < k then (x, y) ∈≿′⋆, else k < i then (y, x) ∈≿′⋆, or i = k.
In that case, either j ≤ l and (x, y) ∈≿′⋆ or l ≤ j and (y, x) ∈≿′⋆.
In both cases, (x, y) ∈≿′⋆ ∨(y, x) ∈≿′⋆.

Let us prove that it is transitive. Let us consider x, y, z ∈ D, such
that (x, y) ∈≿′⋆ and (y, z) ∈≿′⋆. Therefore, ∃i, k,m ∈ [[1, d]] and
∃j, l, n ∈ [[1, e]] such that x ∈ Ki, Cj , y ∈ Kk, Cl, z ∈ Km, Cn,
(i < k) ∨ (i = k ∧ j ≤ l) and (k < m) ∨ (k = m ∧ l ≤ n).
This is decomposed into four cases. Firstly, if (i < k) and (k < m),
then i < m and (x, z) ∈≿′⋆. Secondly, if (i < k) and k = m, then
i < m and (x, z) ∈≿′⋆. Thirdly, if i = k and (k < m), then i < m
and (x, z) ∈≿′⋆. Lastly, if (i = k ∧ j ≤ l) and (k = m ∧ l ≤ n),
then (i = m ∧ j ≤ n) and (x, z) ∈≿′⋆. It is always transitive.

Proposition 19. ≿′⋆∈ Ext(≿′)

Proof. Let us prove that ≿′⋆ is an extension of ≿′. Let us prove
I(≿′) ⊆ I(≿′⋆) and P (≿′) ⊆ P (≿′⋆). Assume (x, y) ∈ I(≿′),
then ∃Ci ∈ C such x, y ∈ Ci. By construction ∃j ∈ [[0, d]] such
that x, y ∈ Kj . Knowing that j ≤ j and i ≤ i, we get x ≿′⋆ y and
y ≿′⋆ x, therefore I(≿′) ⊆ I(≿′⋆).

Assume (x, y) ∈ P (≿′), thus ∃Ci, Cj ∈ C such that x ∈ Ci,
y ∈ Cj and Ci ≻C Cj . Then, we can compare their longest path to
a decision of a maximal class ≻C: d≻C(x) + 1 ≥ d≻C(y). Therefore
∃a, b ∈ [[0, d]] such that x ∈ Ka, y ∈ Kb and a < b. By construction
of ≿′⋆, we get (x, y) ∈ P (≿′⋆). ≿′⋆ is an extension of ≿′.

Proposition 20. ≿′⋆ satisfy W

Proof. As ≿′⋆ is a total preorder, it holds that
D2 = P (≿′⋆) ∪ I(≿′⋆) ∪ P (≿′⋆)−1, as W ⊆ D2 it holds
that W ⊆ P (≿′⋆) ∪ I(≿′⋆) ∪ P (≿′⋆)−1. Let us prove this
proposition by proving that W ∩ P (≿′⋆)−1 = ∅. Ad absur-
dum, let us suppose that ∃x, y ∈ D such that (y, x) ∈ W and
(x, y) ∈ P (≿′⋆). As x, y ∈ P (≿′⋆), from (x, y) ∈≿′⋆, we get
that ∃i, k ∈ [[1, d]] and j, l ∈ [[1, e]] such that x ∈ Ki, Cj and
y ∈ Kk, Cl and (i < k) ∨ (i = k ∧ j ≤ l). From (y, x) /∈≿′⋆, we
get (k ≤ i) ∧ (k ̸= i ∨ l > j). Combining this formula, we get
(k > i) ∨ (k = i ∧ l > j).

Let us consider the case where k > i: it means that
d≻C(x) < d≻C(y), thus ∃Cp ∈ max≻C such that there is a
path in ≻C from Cp to Cl of size k. Therefore, noting
y = bk, ∃a0, . . . , ak, b0, . . . , bk−1 and ∃C1, . . . , Ck−1 with
a0, b0 ∈ Cp, ∀f ∈ [[1, k − 1]], af , bf ∈ Cf , ak ∈ Cl such that
∀f ∈ [[0, k − 1]], afP (≿′)bf+1. By construction of ≿′, we get

∀f ∈ [[0, k − 1]], afN
′
≻bf+1. Let us focus on the link between Ck−1

and Ck: ak−1N
′
≻bk means that ∃g, h ∈ D, ak−1U

+gUprhU
+bk.

As bkWx and by definition of U , W ⊆ U , it holds that hU+x. By
definition of N ′

≻, it holds that ak−1N
′
≻x and thus ak−1P (≿′)x. By

definition of ≻C, Ck−1 ≻C Cj . Therefore there is a path in ≻C from
Cp to Cj of size k. As i is the size of the longest path from a maximal
classes to Cj , we get i ≥ k, which is absurd.

Let us consider the case where (k = i ∧ l > j): by construction,
we defined that ∀k ∈ [[1, d]], ∀a, b ∈ Kk such that a ∈ Ci, b ∈ Cj

and i ̸= j, it holds that (aWb ⇒ i < j). As yWx, all the conditions
hold and thus j < l. It is absurd.

In both cases it is absurd, thus W ⊆ P (≿′⋆) ∪ I(≿′⋆).

To prove that ≿′⋆ satisfy D, the following condition is necessary:
D ∩N ′

∼ = ∅. This is due to the fact that D can be considered as the
negation of equivalence.

Proposition 21. ≿′⋆ satisfy D

Proof. As ≿′⋆ is a total preorder, it holds that
D2 = P (≿′⋆) ∪ I(≿′⋆) ∪ P (≿′⋆)−1, as D ⊆ D2 it holds that
D ⊆ P (≿′⋆) ∪ I(≿′⋆) ∪ P (≿′⋆)−1. By condition, it holds that
D ∩ N∼ = ∅. Let us prove that I(≿′⋆) ⊆ N ′

∼. Let us suppose
∃x, y ∈ D such that (x, y) ∈ I(≿′⋆). It means that (x, y) ∈≿′⋆

and (y, x) ∈≿′⋆. From (x, y) ∈≿′⋆, we get that ∃i, k ∈ [[1, d]]
and j, l ∈ [[1, e]] such that x ∈ Ki, Cj and y ∈ Kk, Cl and
(i < k) ∨ (i = k ∧ j ≤ l). As (y, x) ∈≿′⋆, it also holds that
(k < i) ∨ (i = k ∧ l ≤ j). Therefore not only i = k but
j = l. Thus x, y ∈ Cj . By definition of the equivalence classes,
(x, y) ∈ N ′

∼. Thus, it holds that D ∩ I(≿′⋆) = ∅. It proves that
D ⊆ P (≿′⋆) ∪ P (≿′⋆)−1.

This concludes the proof. Three conditions have been assumed:
N ′

≻ is asymmetric, N ′
∼ ∩ N ′

≻ = ∅ and D ∩ N ′
∼ = ∅. Under this

condition, this section builds ≿′⋆∈
⋂n

i=1 TExt(Ri) such that W ,
D are satisfied by ≿′⋆.

6 Conclusion

This paper proposes a definition of compatibility between preorders
interpreted as preference relations on decisions. It establishes a nec-
essary and sufficient condition of compatibility, which is a modified
version of the consistency property proposed by Suzumura, using
known theorems on the existence of an extension. Then, considering
a finite set of decisions, as commonly occurs in the computational
ethics settings, we propose an alternative proof of the sufficiency
of the condition. This proof is constructive because it proposes four
steps to construct a unique preference relation in which all prefer-
ences and equivalences defined in the preorders are preserved. Fi-
nally, we show that these steps can also be used to prove the compat-
ibility of preorders with additional constraints.

Future works aim at applying the theoretical foundations proposed
in this paper to computational ethics, as this enables the study of the
compatibility between several ethical principles. In the case the prin-
ciples are compatible, the extension proposed in Section 4 provides
an effective representation of the ethical aspect of the decision prob-
lem. Ongoing works aim at determining the complexity of the con-
struction of this extension. In case the principles are incompatible,
future works aim at explaining the incompatibility sources so as to
determine the extent to which they can be used jointly.



References
[1] W. Bossert. Incommensurability and consistency. Philosophical Stud-

ies, pages 1–17, 2023.
[2] R. Bradley. A note on incompleteness, transitivity and suzumura con-

sistency. Individual and Collective Choice and Social Welfare: Essays
in Honor of Nick Baigent, pages 31–47, 2015.

[3] P. Eades and L. Xuemin. How to draw a directed graph. In 1989 IEEE
Workshop on Visual Languages. IEEE Computer Society, 1989.

[4] P. C. Fishburn. The Theory of Social Choice. Princeton University
Press, 1973.

[5] B. Hansson. Choice structures and preference relations. Synthese, 18
(4):443–458, 1968.

[6] P. Healy and N. S. Nikolov. Hierarchical drawing algorithms. In
R. Tamassia, editor, Handbook on Graph Drawing and Visualization,
pages 409–453. Chapman and Hall/CRC, 2013.

[7] N. Houy. A note on the Suzumura-consistency. Mathematical Social
Sciences, 55(1):90–95, 2008. ISSN 0165-4896.

[8] J. L. Kelley. General topology. Courier Dover Publications, 2017.
[9] K. Mehlhorn. Graph algorithms and NP-completeness. Springer-

Verlag, Berlin, Heidelberg, 1984.
[10] F. Rossi. Moral preferences. In 10th Workshop on Advances in Prefer-

ence Handling (MPREF), 2016.
[11] K. Suzumura. Remarks on the theory of collective choice. Economica,

pages 381–390, 1976.
[12] E. Szpilrajn. Sur l’extension de l’ordre partiel. Fundamenta Mathemat-

icae, 16(1):386–389, 1930.
[13] S. Tolmeijer, M. Kneer, C. Sarasua, M. Christen, and A. Bernstein. Im-

plementations in machine ethics: A survey. ACM Comput. Surv., 53(6),
12 2021.


