
Fair Division with Storage and
an Application to Water Allocation

Eyal Briman1, Nimrod Talmon1, Stephane Airiau2, Umberto Grandi 3, Jerome Lang 2, Jerome Mengin 3 and
Faria Nasiri Mofakham4

1Ben Gurion University of the Negev
2Paris Dauphine University

3Toulouse University Capitole
4University of Isfahan

Abstract. We study a model of fair division that is motivated by
the fair distribution of water. In our basic setting, there is a cen-
tral scarce, time-varying source of water that can be stored (possibly
partially); and several agents with different, time-varying demand of
water. We consider several mechanisms for allocating water at each
point in time, study their properties, and design efficient algorithms
that achieve these goals for most cases, based on the maximization
of utilitarian, egalitarian or Nash social welfare. In order to show the
practical feasibility of our approach, we run our algorithms on sim-
ulated data as well as on simplified real data. The simulation results
suggest (and perhaps confirm) that Nash social welfare is a sweet
spot between efficiency and fairness.

1 Introduction
Water scarcity poses a significant challenge in many regions world-
wide, necessitating the fair distribution of water among various
agents in different sectors. Motivated by the fair distribution of water,
in this paper we develop a fair division model for temporal resource
allocation, and explore the application of fair division algorithms to
manage water resources in regions with water shortages. We focus
only on farmers with different sizes of fields growing different kinds
of crops which require different amount of water. Indeed, ensuring
equitable and efficient water distribution among diverse agents is of
paramount importance, particularly given the significant variations in
water needs among different users. The development of algorithms
that can achieve fair allocation of water resources is crucial to ad-
dress environmental sustainability, social equity, and economic sta-
bility. Such algorithms can optimize water distribution, considering
factors like population density, agricultural demands, industrial re-
quirements, and ecological preservation, thereby promoting respon-
sible water management and safeguarding the fundamental right to
access clean water for all individuals and sectors.

Beyond the equitable distribution of water, our proposed model
may find application in other temporal resource allocation domains,
provided they meet the following model requirements:

1. A divisible resource must be allocated among a set of agents at
each point in a (discrete) set of time steps.

2. The resource can be stored centrally, with or without a limit. There
may be an evaporation factor expressing that at each time point, a
fraction of stored water will be lost.

3. At each point in time, an additional amount of resource comes in,
following a predictable pattern.

4. Each agent has a known demand function specifying the amount
of resource they require at each point in time. This demand func-
tion is established from the outset.

Requirement 1 places our study in the setting of temporal fair di-
vision of a divisible resource. Requirement 2 is mild and allows for
a continuum between unlimited storage capacity to zero storage ca-
pacity, as well as a continuum between no evaporation at all and full
evaporation (full evaporation being equivalent to no storage). Re-
quirement 3 is an important simplification, as water income from
rainfall is more of a stochastic nature. However, it makes sense to
study this simplified version first, and we will argue later that our
results can be adapted rather easily to stochastic water income. Re-
quirement 4 is also a simplification, as demand can be stochastic too,
but it is reasonable enough in domains such as agriculture or industry.

Informally speaking, in our model we have a centralized supplying
entity, which possesses a predictable future supply curve in time; and
an agent community, wherein each agent exhibits its unique desired
demand curve over time – i.e., its demand over time. The objective is
to efficiently allocate the available supply among these agents, with
their utility determined by the fractional demand that is assigned to
them. Essentially, we seek to strike a balance between optimizing
individual agent utility and promoting fairness within the allocation
process, while ensuring strategy-proofness. To achieve this, we con-
sider the three classical notions of social welfare: utilitarian, Nash
product, and egalitarian. While we consider water allocation as the
primary application of our model, it also makes sense to other do-
mains such as allocation of monetary resources (generally with full
storage, except when some funds have a time limit), and electricity
with storage, as new technologies are providing avenues for storing
thermal energy at scale (used for electricity production) while mini-
mizing environmental impact [3].

On the theoretical side, we show the existence of efficient algo-
rithms that distribute the resource according to the different fairness
notions described above, as well as achieve certain axiomatic prop-
erties. On the experimental side, we report on computer-based simu-
lations done to identify the different behavior of these algorithms for
simulated data ad simplified real-world data.



In this study, we consider a particular, simplified resource distribu-
tion model, recognizing that real-world systems encompass a myriad
of additional complexities, notably distributed production and supply
mechanisms. While we believe that our model serves as a valuable
starting point for understanding fundamental principles in the con-
text of fair division over time, incorporating further aspects, such as
the distributed production and supply is an intriguing future direction
for research.

Outline After discussing related work, we present our model of
fair division with storage. Then we show how optimal allocations can
be computed, exactly or approximately. We also discuss a few basic
properties of the optimal solutions. Finally, we analyse the output of
computer simulations, both on synthetic and on ‘semi-real’ datasets.

1.1 Related work

Fair allocation under Leontief preferences Given a set of m di-
visible resources, a Leontief utility function has the form

u(x1, . . . , xm) = max
j∈{1...m}

xj

d(j)

where d(j) is the amount of resource j demanded by the agent and
xi is the amount of resource given to her. Fair division with Leontief
utilities has received some attention, particularly in the context of fair
division of computer resources: each resource j has a limited supply
rj , and each of n agents has a Leontief utility function ui associated
with a demand vector.

Dominant resource fairness (DRF) [9] assumes that every agent
has a Leontief utility function with a positive demand for each re-
source. Given a demand vector di for agent i, the normalized demand
vector d∗i is defined as the fraction of the total supply of each resource
demanded by the agent. For each agent, the resource maximizing
normalized demand is called the dominant resource. Dominant re-
source fairness equalizes the share of the dominant resource given
to all agents. Dominance resource fairness is egalitarian in essence:
it maximizes egalitarian social welfare, provided the agents’ utilities
are normalized such that each agent’s utility is the amount of their
dominant resource that they get.

DRF is generalized by Parkes et al. [14] to account for the pos-
sibility for agents to have a zero demand on some resources (and
also to weighted agents), and by Li and Xue [12], with generalized
Leontief utilities, defined as the maximum between several Leontief
utility functions. Codenotti and Varadarajan [7] show when agents
have Leontief preferences, market equilibria (in a version of Fisher’s
model) can be computed in polynomial time. Yet another rule for fair
allocation with Leontief utilities is the no justified complaints rule
proposed by Dolev et al. [8].

These works regard the field of allocation of heterogeneous re-
sources, with applications mostly to allocation of computer resources
(especially, for cloud computing). The relation to our model is by
identifying resources (in the DRF setting) with water to be allocated
at time t in ours. However, none of these works consider storage (and
for good reasons: bandwidth and CPU usage cannot be stored).

Repeated fair allocation Repeated fair allocation has received
some attention in the context of indivisible goods and/or chores
[4, 10]. A related line of work in dynamic fair division is online fair
division, where indivisible items arriving at different time points have
to be allocated as soon as they are available (see [2] for a survey). Yet
another related line of related work is that of perpetual voting and re-
lated models [11, 5, 6], in which repeated decisions are being made,

which relates – but is not identical – to the fact that we make a deci-
sion for each time step.

2 The model
2.1 Supply and demands

An instance of the formal model of water allocation we consider con-
tains the following input ingredients:

• m time bins T = {t1, · · · , tm} representing some period of time;
• A supply function S : t → Q+, where t ∈ {t1, · · · , tm} cor-

responds to the (additional) supply in time t of the good (which
from now on we call water).

• A set of n agents, where agent i ∈ [n] has its demand over T ;
this is denoted by di such that di : t → Q+, where i ∈ [n],
t ∈ {t1, · · · , tm}, corresponds to the demand of agent i in time
period t. As a non-triviality assumption we assume that there is a
point t ∈ {t1, · · · , tm} where the global demand is non-null. In
some situations, it is appropriate to make the further assumption
that demands are on intensities and not absolute quantities, i.e.,
that

∑
t∈{t1,··· ,tm} di(t) = k for each each agent i ∈ [n], hav-

ing k to be a constant. We will say that in this case the demands
are normalised. Except when it is clearly stated, we do not make
this assumption. Note that when distributing water among farms /
fields, this assumption does not seem appropriate, as the amount of
water that is needed depends on the crops and the field’s size. This
normalizing assumption may be relevant in other contexts, for in-
stance when distributing energy, or computer resources, among
agents that have the same stakes. This assumption is also rem-
iniscent of cumulative voting, where a set of points need to be
distributed over candidates.

• a common reservoir / storage facility of capacity C ∈ Q+ ∪
{+∞}. When C = 0 (respectively, C = +∞), we say that there
is no storage (respectively, full storage). We consider an evapora-
tion factor E : T → [0, 1]; it represents the percentage of residual
water amount after evaporation during a single unit of time, de-
pendent on the period of the year. In the following, we assume
that the reservoir is initially empty. However, our analysis would
remain the same if we assumed that the reservoir contains a quan-
tity q0 water initially with the additional constraint that the reser-
voir should contain at least q0 at the end of the last time step. For
simplicity, we assume q0 = 0.

It is thus convenient to denote an instance of our water allocation
model by (S,D,C,E), where D = {d1, . . . , dn}. We write (S,D)
for instances with no storage (C = 0, and E is irrelevant).

2.2 Allocations

Given an instance (S,D,C,E) of the model, a solution W corre-
sponds to a division of the total available supply to the different
agents. Formally:

• W = {w1, . . . , wn}, where wi, i ∈ [n], is a function wi : t →
Q+, where wi(t), i ∈ [n], t ∈ {t1, · · · , tm}, corresponding to
the amount of supply assigned to agent i in time period t. We
refer to wi(t) as the water allocation for agent i at time period t.
Slightly abusing notation, it is convenient to denote by W (t) the
total allocation at time t: W (t) =

∑
i wi(t).

• W denotes the feasible space: the set of those allocation vectors
W such that at every time point t, allocation W (t) does not ex-
ceed supply S(t) plus what is left in the storage after evaporation.



Formally, we introduce R(t) to represent the quantity of water re-
maining in the reservoir at the beginning of time period t. Then
we must have:

– R(t1) = 0, R(ti+1) = E(ti) × min(C, (R(ti) + S(ti) −
W (ti)), and

– W (ti) ≤ S(ti) +R(ti) at every time point ti.

When there is no storage, C = 0, this reduces to: W (ti) ≤ S(ti)
at every time point ti.

2.3 Agent utility as fraction of demand

Given an instance (S,D,C,E) and a solution W , we define the util-
ity of agent i – denoted by util(i) (where (S,D,C,E) and W are
clear from the context) – to be the largest value α ∈ Q+ for which it
holds that wi(t) ≥ α · di(t), for each t ∈ {t1, · · · , tm}. Formally,
util(i) = min{t|di(t)>0}

wi(t)
di(t)

. If di(t) = 0 for all t then agent i
can be safely excluded from the model.

Our definition of utility captures the agricultural intuition that the
agent can only “grow” a fraction equals to util(i) of what it intended
to do with the water, with the minimum allocation of water defining
what “crop” survive. This is exactly the setting of Leontief utilities
(cf. Section 1.1), with a different interpretation though, since here
resources correspond to water used at different time points. This im-
plies that our model without storage correspond to fair allocation
with Leontief utilities. With storage, however, the constraints bear-
ing on water consumption at different time points (and the impor-
tance of the direction of time) significantly departs from fair alloca-
tion with Leontief utilities. One simplification from a more realistic
model is the absence of a maximum demand: if water was abundant,
our model could allow to cultivate more than 100% of a field. How-
ever, our study is only interesting in the case where water is scarce,
i.e. there is not enough water for the needs of all the farmers.

2.4 Tight allocations

Following the definition of agent utility above, and for regularization
reasons, we will be interested only in a specific sub-class of water
allocations, as defined next.

Definition 1. A solution W to a water allocation instance
(S,D,C,E) is tight if wi(t) = util(i) · di(t) for all agents and
all t ∈ {t1, · · · , tm}.

Thus, when restricting to tight solutions, we will use αi to denote
the water allocation wi(t) = αidi(t). Informally, a tight water al-
location allocates a constant fraction of the demand of water to an
agent. In doing so, it corresponds to a tightness requirement in which
it never gives more water to an agent than the agent needs (given the
water it gets at other times). Given our definition of utility, without
loss of generality we can from now on consider only tight alloca-
tions. Without storage, the water that is not used is lost: in the irri-
gation application, it would not be useful for the crop. Technically,
such unused water could be added to the tight allocation: the result-
ing allocation would no longer tight, but the utility of each agent
would remain the same. With storage, the unused water is of course
the water stored and is available for coming time steps.

2.5 Optimization criteria as social welfare measures

Given the definition of the agent utility as given above, we consider
several, different optimization/fairness goals. The utilitarian criterion

is quite direct; it has the positive property of maximizing social wel-
fare, however, it can completely ignore many agents. In the utilitar-
ian version of the problem we aim at maximizing the sum of utilities;
i.e., we are looking for the following:

argmax
W

∑
i∈[n]

util(i)

 .

The egalitarian social welfare is quite extreme; on one hand, it
does not ignore agents, however, on the other hand, it may reduce
the social welfare significantly just for a single agent. In this version
of the problem we aim maximizing the minimum utility; i.e., we are
looking for the following:

argmax
W

(
min
i∈[n]

util(i)

)
.

Maximizing egalitarian social welfare without storage is almost
equivalent to dominance resource fairness (DRF), up to normaliza-
tion: in DRF, an agent’s utility is the share of their dominant resource.
This can be written as maximum egalitarian social welfare as in our
setting, provided that demands are re-normalized in such a way that
each agent has a unit demand for their dominant resource.

The prioritarian social welfare is sometimes considered as a trade-
off between the utilitarian the egalitarian one. We model this by the
Nash product. Hence, we aim at maximizing the multiplication of the
utilities; i.e., we are looking for the following:

argmax
W

 ∏
i∈[n]

util(i)

 .

3 Computation and properties
We design algorithms to compute water allocations according to the
three optimisation criteria considered, and investigate their theoreti-
cal properties of strategy-proofness and Pareto-efficiency.

3.1 Computing optimal allocations

We start with the egalitarian solution, for which we are able to find a
close form solution.

Theorem 1. Every water allocation instance without storage has a
tight egalitarian solution that allocates wi(t) = α · di(t) to each i,
where

α =
S(t∗)∑
i di(t

∗)
and t∗ ∈ argmin

{t∈{t1,··· ,tm}|
∑

i di(t)>0}

S(t)∑
i di(t)

.

This solution is unique and can be computed in polynomial time.

Proof. Time point t∗ ∈ argmin{t∈{t1,··· ,tm}|
∑

i di(t)>0}
S(t)∑
i di(t)

is a time period in which the total water demand (i.e the sum of all
agents’ demands) reaches its peak, i.e., α is the fraction of water that
can be allocated equally to each agent in the time of peak demand.
Consider the tight solution W ∗ that gives utility α to every agent:
w∗

i (t) = αdi(t) for every agent i at every time point t. Consider
another solution W ′ such that w′

i(t) ≥ utilw′(i) × di(t) for every
agent i and time point t. In order to beat W ∗ on the egalitarian crite-
rion, W ′ must give a strictly better utility than W ∗ for every agent i:
α < utilw′(i). Since S(t)∑

i di(t)
is minimum at time t∗,

∑
i di(t

∗) ̸= 0

(recall that we assume that demands are non null and ≥ 0, so there



is at least one time point t where
∑

i di(t) ̸= 0). Then we must
have

∑
i αdi(t

∗) <
∑

i utilw′(i)di(t
∗) =

∑
i w

′
i(t

∗) ≤ S(t∗) =
α
∑

i di(t
∗), which is a contradiction. Therefore W ∗ is the only tight

solution that maximizes the egalitarian criterion.

The result also holds when storage is available, although the close
form of α is more complicated.

Theorem 2. Every water allocation instance with storage has a tight
egalitarian solution that allocates wi = α·di to each i. This solution
is unique and can be computed in polynomial time.

Proof. We can use an iterative argument following the proof of The-
orem 1. We can initially run the algorithm with no storage: we obtain
a fist allocation. Let σ be the permutation such that S(σ(t))∑

i di(σ(t))
is

ordered from the smallest to the largest. As long as there is enough
available water in storage, we use a quantity of water rl and split it
between the first l − 1 periods so that the following first l + 1 terms

are equal : S(σ(1))+r11+r12+r13 ···+r1l∑
i di(σ(1))

=
S(σ(2))+r22+···+r2l∑

i di(σ(2))
= · · · =

S(σ(l))+rlll∑
i di(σ(l))

= S(σ(l+1))∑
i di(σ(l+1))

. Informally, we raise the level of the
first peak to the second peak at the first iteration, then (if the avail-
able water is sufficient), we can raise the level of the first two peaks
to the level of the third peak and so on. We can use a simple linear
program to share the available water. Two cases may occur in the
process. Either there is a point l where there is not enough available
water to reach the equality of the first l terms. In this case, the algo-
rithm stops, and we have an egalitarian solution by sharing equally
the water. The water left cannot be used to improve the utility of any
agent. If there is water available, all periods have been served, and
we can add water to all periods to improve the utility of each agent,

and we obtain S(σ(1))+r11+r12+r13 ···+r1T∑
i di(σ(1))

=
S(σ(2))+r22+···+r2l +r2T∑

i di(σ(2))
=

· · · =
S(σ(l))+rT−1

T−1
+rT−1

T∑
i di(σ(l))

=
S(σ(T ))+rTT∑

i di(σ(T ))
and no water is left. In

that case, sharing equally the water is egalitarian. Note that the max-
imum number of iteration is the number of periods, so the computa-
tional complexity is polynomial.

Whether storage is available or not, our proofs show that all agents
share the same α. Combined with our notion of utility, this implies
that the utility of all agents is the same for the egalitarian solution:
the egalitarian solution is actually stronger, it is equitable.

Corollary 1. A tight egalitarian solution is equitable (i.e., the utility
of each agent is the same) with or without storage.

We now move to the case of the utilitarian solution, which can be
computed by a linear program.

Theorem 3. The utilitarian solution with and without storage can
be computed in polynomial time using linear programming.

Proof. For the case of storage, the utilitarian solution can be com-
puted by using the following linear program:

Constants : S(t) (supply in time t ∈ {t1, · · · , tm}), capac-
ity C, evaporation constant E(t) at time t ∈ {t1, · · · , tm}, and
di(t) (demand of agent i in time t ∈ {t1, · · · , tm}), i ∈ [n],
t ∈ {t1, · · · , tm}.

Real-valued variables αi, wi(t), X(t) i ∈ [n], t ∈ {t1, · · · , tm}.
note that X(t) is the amount of water stored on time t.

Maximize
n∑

i=1

αi.

Subject to

wi(t) ≥ αi · di(t) , ∀i ∈ [n], t ∈ {t1, · · · , tm} (tightness)

W (t) =

n∑
i=1

wi(t)

W (t1) ≤ S(t1)

W (t) ≤ S(t) +X(t), for all ∈ t > 1

X(t) ≤ (X(t− 1) + S(t− 1)−W (t− 1)) · E(t),

for all t ∈ {t1, · · · , tm}
X(t) ≤ C, ∀t ∈ {t1, · · · , tm}

Note that by adding a variable αmin and a constraint αmin ≤ αi

for each agent i, we can use the linear program in the proof of The-
orem 3 to compute the egalitarian solution by changing the objective
function to maximising αmin.

Because utilitarian and egalitarian social welfare can be formu-
lated as linear programs, there always exists an optimal solution
where the amount of water allocated to each agent at each time point
is a rational number. This is no longer the case with Nash social wel-
fare (which is something quite classical with maximal Nash welfare).
As a consequence, assessing the computational complexity of the ex-
act optimization problem is not what should be focused on. On the
other hand, obtaining an approximate solution by convex program-
ming is convenient. In our simulations for the Nash algorithm, we use
Gurobi’s log approximation1, enabling us to set the objective func-
tion of the Nash LP formulation to be: Maximize

∑n
i=1 log(αi).

Example 1. Consider the example in Table 1, modelling the de-
mands of 3 agents over 3 time steps and the supply over 3 time
steps. The (different) solutions to this water allocation problem ob-

Table 1. Agent demand and supply.

di(t1) di(t2) di(t3)
Agent 1 18.44 8.43 73.13
Agent 2 46.22 10.47 43.32
Agent 3 28.24 54.96 16.79

Supply 67 51 71

tained using the three proposed optimization criteria (without assum-
ing storage) are presented in Table 2. If we consider a storage of 20
water units then the results are presented in Table 3. In both Tables 2
and 3, each α value is rounded up to two decimal places. In this Ex-
ample we see that incorporating storage increases the social welfare
and that utilitarian seems to be the most ”unfair”.

3.2 Pareto-efficiency and strategy-proofness

Pareto Efficiency means that there is no other solution for which all
agents are at least as happy and at least one agent is strictly happier.
Formally:

1 https://www.gurobi.com/documentation/9.1/refman/py_model_agc_log.
html



Table 2. Water allocation to agents with no storage.

Criterion Agent wi(t1) wi(t2) wi(t3) ⌈α⌉

Utilitarian
Agent 1 4.99 2.284 19.79 0.27
Agent 2 41.84 9.474 39.22 0.91
Agent 3 20.16 39.24 11.99 0.71

Egalitarian
Agent 1 9.83 4.49 38.96 0.53
Agent 2 24.63 5.58 23.08 0.53
Agent 3 15.05 29.29 8.95 0.53

Nash
Agent 1 7.65 3.5 30.33 0.41
Agent 2 30.13 6.82 28.23 0.65
Agent 3 20.91 40.68 12.43 0.74

Table 3. Water allocation to agents with 20 units of water storage.

Criterion Agent wi(t1) wi(t2) wi(t3) ⌈α⌉

Utilitarian
Agent 1 17.37 7.94 68.86 0.94
Agent 2 21.39 4.84 20.05 0.46
Agent 3 28.24 54.96 16.79 1.00

Egalitarian
Agent 1 13.30 6.08 52.74 0.72
Agent 2 33.33 7.55 31.24 0.72
Agent 3 20.37 39.64 12.11 0.72

Nash
Agent 1 18.44 8.43 73.12 1.00
Agent 2 24.48 5.54 22.94 0.53
Agent 3 24.08 46.86 14.32 0.85

Definition 2. An algorithm A is Pareto efficient if, for each instance
– denoting the utility of the agents given A by α – there is no other
solution W ′ that corresponds to agent utilities α′ such that α′

i ≥ αi,
i ∈ [n] and there is at least one i such that α′

i > αi.

Intuitively, Utilitarian, and Prioritarian satisfy Pareto efficiency,
because a solution that only improves the agent utilities also achieves
higher score; but, for Egalitarian, it does not hold because a solu-
tion violating the Pareto Efficiency may achieve the same Egalitarian
score. The proof is included in the supplementary material.

Theorem 4. The Utilitarian, and Prioritarian variants satisfy Pareto
efficiency, but the Egalitarian variant does not satisfy Pareto Effi-
ciency, even in the model without storage.

We now turn to analyse the incentive structure of our proposed
allocation mechanism. Recall that a mechanism is strategy-proof if
agents have no incentive to misreport their demand, i.e., given a water
allocation instance (S,D), for all d′i ̸= di the utility of agent i in
(S,D) is bigger or equal than the utility of i in (S,D′) where D′

is the profile of demands D where agent i reports d′ instead of d.
We start with egalitarian for which we have positive results with and
without storage. We provide a formal proof for the non-storage case
and a sketch for the storage case.

Theorem 5. The egalitarian solution is strategy-proof for tight allo-
cations, assuming no storage and the manipulator does not change
the sum of her demands.

Proof. Let (S,D) be an initial instance, and let W be its associated
egalitarian solution. Consider agent i0 who aims at changing the re-
sult in its favour by reporting a different demand function d′i0 . Let
(S,D′) where D′ = (d1, . . . , d

′
i0 , . . . dn) be the “manipulated” in-

stance of the problem and W ′ be its associated egalitarian solution.
Let T ∗ = argmint∈{t1,··· ,tm}

S(t)∑
i di(t)

the set of peaks in the ini-

tial instance, and let T ′ = argmint∈{t1,··· ,tm}
S(t)∑
i d′i(t)

be the new
set of peaks in the manipulated instance. The egalitarian allocations
are computed with α = S(t∗)∑

i di(t∗)
for any t∗ ∈ T ∗ in the initial

instance, and α′ = S(t′)∑
i di(t′)

for any t′ ∈ T ′ in the manipulated one.

Let util i0 denote the utility of agent i0 with the initial allocation,
and util ′i0 her utility in the allocation made on the basis of the manip-

ulated instance. Then util i0 = α and util ′i0 = mint

(α′d′i0
(t)

di0 (t)

)
=

α′ mint
d′i0

(t)

di0 (t)
. The manipulation is profitable if and only if α <

α′ mint
d′i0

(t)

di0 (t)
. We distinguish two cases:

1) If α ≥ α′: note that mint
d′i0

(t)

di0 (t)
< 1, because i0’s modified de-

mand must still sum to K, and there must be some time point t such
that d′i0(t) ̸= di0(t), so there must be some time point t such that

d′i0(t) < di0(t). Therefore, in this case, α ≥ α′ > α′ mint
d′i0

(t)

di0 (t)
,

so the manipulation is not profitable.
2) If α < α′: recall that W (t∗) (respectively W ′(t∗)) is the total

amount of water allocated at time t∗ with the non-manipulated (resp.
manipulated) instance. Let Ḋ(t∗) be the sum of the demands by the
other agents at t∗, unchanged in the manipulated instance: Ḋ(t∗) =∑

i ̸=i0
di(t

∗) =
∑

i ̸=i0
d′i(t

∗). Then W (t∗) = αḊ(t∗) + αdi0(t
∗)

and W ′(t∗) = α′Ḋ(t∗) + α′d′i0(t
∗) > αḊ(t∗) + α′d′i0(t

∗)
since α < α′. Moreover, W ′(t∗) ≤ S(t∗) (allocation cannot ex-
ceed supply without storage), and W (t∗) = S(t∗) since all wa-
ter is allocated at time t∗ in the non-manipulated instance, thus
W (t∗) ≥ W ′(t∗). This implies that αdi0(t

∗) > α′d′i0(t
∗). It

cannot be the case that di0(t
∗) = 0 since α′d′i0(t

∗) ≥ 0, thus

α > α′ d
′
i0

(t∗)

di0 (t∗) ≥ α′ mint
d′i0

(t)

di0 (t)
, which implies that the manipu-

lation is not profitable.
In both cases above, the manipulation is not profitable. Therefore

the egalitarian solution is strategy-proof.

Theorem 6. The egalitarian solution is strategy-proof for tight allo-
cations, assuming storage and the manipulator does not change the
sum of her demands.

Proof. We re-use the notation of the previous proof. In an egalitarian
solution, all agents share the same α and there must be a time step t⋆

for which no more water is available to increase the utility. As noted
in the previous proof, it must be the case that α′ > α. As a conse-
quence, all other agents get more water as their demands remain the
same (recall that in a tight allocation, an agent i gets α′di(t)). To
increase her utility, the manipulator must also get more water, so all
agents strictly increase their water allocation. However as no water is
available at t⋆, there is no additional water available, so the solution
is strategy-proof.

The manipulations considered assume that the manipulator i0 does
not change the sum of her demands, i.e.

∑
t di0(t) =

∑
t d

′
i0(t).

This assumption makes some sense in our irrigation application: the
restriction requires the farmer to request the same total intensity of
water, but she can change how she distribute it over the different time
steps. Without such assumption, the following examples show that it
is possible to manipulate2.

Example 2. Consider an instance with two time steps and two
agents; let S = (1, 1), d1 = (1/2, 1/2), d2 = (1, 0). the Egali-
tarian allocation is α = 1/(1 + 1/2) = 2/3; Suppose now that
agent 1 manipulates with demands d′1 = (1, 1): both time steps see
the same overall demand 1 + 1, and the Egalitarian allocation is
α = 1/(1 + 1) = 1/2; since both agents have the same demands,
they both get the allocation w′ = (1, 1)/2 = (1/2, 1/2); for agent

2 Observe that dominant resource fairness is also strategyproof [9] and also
relies on a normalization (albeit a different one).



2, this makes a utility of 1/2; but for the first agent, the utility, com-
puted w.r.t. her true demands, is min( 1

2
/ 1
2
, 1
2
/ 1
2
) = 1.

The next results show that the utilitarian and prioritarian solutions
are not strategy-proof.

Theorem 7. Under tightness assumptions, the utilitarian solution is
not strategy-proof, even without storage.

Proof. Let us consider the following counterexample illustrated in
Table 4. Under tightness assumptions, the utilitarian solution allo-
cates the supply as shown.

Table 4. Utilitarian manipulation: agent true demands and allocation

Agent i di(t1) di(t2) di(t3) wi(t1) wi(t2) wi(t3)
Agent 1 50 90 10 0 0 0
Agent 2 25 90 35 25 90 35
Agent 3 31 90 29 0 0 0
Supply 30 90 1000

Considering the tightness constraint, this results in
∑3

i=1 αi =
0 + 1 + 0 = 1. If Agent 3 had declared his demand in: time step 1
as 25, time step 2 as 45, and time step 3 as 80, the allocation as shown
in Table 5, would have resulted in an optimization of: α1+α2+α′

3 =
0 + 1 + 0.2 = 1.2, having α′

3 to be the the untruthful α of agent 3.
Then, the actual α of agent 3 would be 0.5, which is indeed larger
than his original α of 0, and hence the manipulation works.

Table 5. Utilitarian manipulation: allocation after manipulation.

Agent i wi(t1) wi(t2) wi(t3)
Agent 1 0 0 0
Agent 2 5 18 7
Agent 3 25 45 80

Theorem 8. Under tightness assumptions, the prioritarian solution
is not strategy-proof, even without storage.

Proof. Consider the counterexample illustrated in Table 6. Under
tightness assumption, the utilitarian solution allocates the supply as
shown.

Table 6. Prioritarian manipulation: agent true demands and allocation.

Agent i di(t1) di(t2) di(t3) wi(t1) wi(t2) wi(t3)
Agent 1 50 90 10 11.67 21.00 2.33
Agent 2 25 90 35 11.90 42.85 16.66
Agent 3 30 90 30 11.43 34.29 11.43
Supply 35 120 1000

Considering the tightness constraint, this results in
∏3

i=1 αi =
0.0424. If Agent 3 had declared his demand in: time step 1 as 25,
time step 2 as 90, and time step 3 as 35, the allocation as shown in
table 7, would have resulted in an optimization of: α1 · α2 · α′

3 =
0.0506, having α′

3 to be the the untruthful α of agent 3. This means
the actual α of agent 3 would be 0.398, which is indeed larger than
his original α of 0.381, and hence the manipulation works.

4 Computer-based simulations
In this section we report on computer-based simulations that explore
the underlying structure of water allocation solutions provided by our
algorithms, and the effect of different instance properties on the solu-
tions. We describe the experimental setup, the evaluated algorithms,
the datasets used, and the relevant parameters and measures.

Table 7. Water allocation to agents and supply after manipulation.

Agent i wi(t1) wi(t2) wi(t3)
Agent 1 11.67 21.00 2.33
Agent 2 11.39 41.01 15.95
Agent 3 11.94 42.98 16.71
Supply 35 120 1000

4.1 Algorithms

We conducted experiments with the utilitarian, prioritarian, and egal-
itarian algorithms (using their algorithms as described above); as
well as a further algorithm that we use as a baseline. We refer to
this algorithm as the equal allocation algorithm.

Definition 3 (Equal allocation). The equal allocation algorithm op-
erates as follows: for each agent, it assigns 1/n of the total supply in
each time step, as well as 1/n of the storage capacity; then, it opti-
mally solves each agent separately.

Remark 1. Note that we consider the equal allocation as a baseline.
In particular, in a way, it does not foster any “communication” (or,
central management) between the agents. Note also that it trivially
satisfies Strategyproofness, Individual Rationality, and Envyfreeness.
As for computation, it can be solved by linear programming (e.g., by
using the utilitarian linear program for each agent separately; this is
how we have computed it in the simulations).

4.2 Datasets

We used two datasets: one that is entirely artificial and another that
is based on real-world attributes. We explain their generation.

Semi-real data We conducted a simulation based on real data from
the Western Negev area of Israel, focusing on 1381 fields irrigated
with greywater (recycled sewage water) over a 6-month period from
April to September. The data [1] includes details on the crops grown
in each field and the field sizes measured in Dunams (equivalent to
1000 square meters). In our simulation, we examined water demand
for fields cultivating wheat, maize, pumpkin, and potato. To estimate
water requirements, we utilized a modified version of a table from a
study by [13] adjusted for Dunams, presented in Table 8.

For each field, we calculated the daily water requirement by mul-
tiplying the crop-specific water requirement by 30 (assuming an av-
erage of 30 days per month) and then by the field size. This process
generated a matrix with 1381 rows (representing each field) and 6
columns (for the 6 months of the study period).

Table 8. Crop Production (m³/dunam/day).

Crops Months
IV V VI VII VIII IX

Maize 1.4 2.6 3.4 3.9 3.6 2.2
Potato 1.6 2.5 3.9 4.2 3.3 1.6
Wheat 2.3 3.7 3.7 3.3 1.5 0.001

Pumpkin 0.001 3.2 3.9 4.1 3.7 2.3

As a post-processing, we normalized the data: the demands were
normalized by dividing each value by the maximum demand ob-
served across all fields and time. Then, the softmax function was
applied.3 This procedure ensured that the sum of demands over all

3 softmax(demand[i, t]) = edemand[i,t]∑k
t=1 edemand[i,t] .



time steps for each field is equal but distributed differently. The sup-
ply was generated using a Dirichlet distribution4 with α6 = 16, mul-
tiplied by a value generated uniformly at random between 10 and 40,
and then multiplied by the number of fields, with 1 added to ensure
all values are strictly greater than zero. The evaporation constant was
also generated uniformly at random between 0 and 0.1.

Artificial data We also generated data that is completely artifi-
cial. In particular, with 500 agents (i.e., fields). The demand of each
field in every instance was generated using a Dirichlet distribution
with αk = 1k, where k is the number of time steps (in our case,
12 months). We then multiplied all demands by 1000 and added 1
to each value, to ensure all values are strictly greater than zero. The
demands can be presented as a matrix sized 500 × 12, where each
row i ∈ [500] represents the demand of field i.

The supply was generated using the same Dirichlet distribution,
but multiplying the values by a uniformly random number between
500 and 1000. Furthermore, we multiplied the supply by 500 (the
number of fields) and added 1 to all supply values to ensure all values
are strictly greater than zero.

4.3 Measures

Given an instance I and some optimization goal F we arrive to
a solution W – that corresponds to some agent satisfaction vector
α1, . . . , αn. We measure the quality of W using two measures:

• Mean α: This is the average of the agent satisfaction from the
solution W – i.e.,

∑
i∈[n]

αi
n

; note that it corresponds to the social
welfare (i.e., to what the utilitarian solution directly optimizes).

• Equality score: This is the ratio between the minimum α and
the maximum α; i.e., mini∈[n] αi/maxi∈[n] αi; we view this as a
fairness measure with equality score 1 being achieved from the
egalitarian solution.

We use two measures regarding the inner instance structure:

• The average ℓ1 distance between demands of fields (i.e., rows in
the matrix). This helps us understand how demands of different
fields are distributed differently, i.e., how similar are the agents
in their demands. Results using this measure are provided in the
supplementary material due to space constraints.

• Most "tight" allocation (peak)-Calculated as:
argmint∈{t1,··· ,tm}

Supply[t]∑n
i=1 demands[i,t]

; i.e., the minimal ra-
tio of the peak (the most tight time step, as a measure of how
constrained the instance is).

4.4 Experimental design

Both kind of simulations share common characteristics:

• There are n fields, each dedicated to growing one type of annual
crop (plants that complete their life cycle within one year). A sim-
plifying assumption in these simulations is that the yearly water
demand (i.e., the sum of demands across all months) is equal for
all fields. In reality, fields may vary in the types of crops grown
and their corresponding water requirements, and also considering
the different sizes of fields.

4 f(p|α) = Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

∏K
i=1 p

αi−1
i .

• There is a monthly water supply, and a centralized storage unit
that exists with a maximum capacity C. Specifically, we examine
the following scenarios: C = 0: no storage available; C ̸= ∞:
limited storage capacity; and C = ∞: unlimited storage capacity.

For both experiments, we tested capacity limits of 0, 50, 100, 200,
and ∞, with the evaporation constant generated uniformly at random
between 0 and 0.1. For the artificial data simulation, we conducted
100 repetitions of generating artificial data for each capacity limit.
Each algorithm was implemented using Gurobi’s Python package.

4.5 Results and Discussion

Figure 1 illustrates that the mean α increases as the storage capac-
ity increases, in the simulation conducted with artificial data. This
observation is further supported by a T-test with Bonferroni correc-
tion conducted between all pairs of capacities. Figure 1 demonstrates
that the utilitarian algorithm receives the highest mean value of α,
followed by Nash, then Egalitarian, and finally, the equal distribu-
tion mechanism. Additional figures presented in the supplementary
material show less unambiguous differences between the capacities
from the perspective of the equality measure. For instance, again on
artificial data we can observe the egalitarian criterion has the high-
est equality measure, followed by Nash, the baseline algorithm, and
then the utilitarian. Additional figures using semi-real data and the
artificial data can be found in the supplementary material.

These results led us to the following conclusions: (1) Using co-
ordination is better than no coordination at all, because Utilitarian,
Nash, and Egalitarian are better than the decentralized no-mechanism
(Equal Allocation); (2) There is indeed a visible trade off between
social welfare and fairness; (3) Incorporating storage, increases the
social welfare and the equality for all algorithms (as one could ex-
pect); (4) Nash is perhaps a sweet spot as it gains in equality but
doesn’t lose much in social welfare; and (5) In semi real world data
simulations the differences between the algorithms are less visible.

5 Outlook

Motivated by various usecases, including water management, we
have considered a model of fair division with storage. We have de-
scribed different optimization criteria and showed the tradeoff be-
tween social welfare and fairness, using both a theoretical analysis
and computer-based simulations.

In the context of water management, some real-world aspects are
not captured by our model. These are interesting avenues for fu-
ture research, and include: different importance weights for different
agents; the existence of several water sources and the geographic and
topological structure of the sources and the agents; the existence of
different types of water (e.g., grey water); the inability of accurately
forecasting rainfalls, necessitating the development of approximation
algorithms that are built upon predictions. Also, our model can prove
useful in related applications of continuous divisible goods over time
such as money and energy management.

References
[1] https://data1-moag.opendata.arcgis.com/datasets/

f2cbce5354024da28f93788c53b182d2_0/explore?location=31.
524637%2C34.978485%2C8.87. Accessed on April 24, 2024.

[2] M. Aleksandrov and T. Walsh. Online fair division: A survey. In AAAI,
pages 13557–13562. AAAI Press, 2020.



Figure 1. Average α as a function of peak - for all 4 algorithms, 5 capacities of storage and all 500 artificial instances generated.

[3] H. M. Ali, T.-u. Rehman, M. Arıcı, Z. Said, B. Duraković, H. I. Mo-
hammed, R. Kumar, M. K. Rathod, O. Buyukdagli, and M. Teggar.
Advances in thermal energy storage: Fundamentals and applications.
Progress in Energy and Combustion Science, 100:101109, 2024.

[4] G. C. Balan, D. Richards, and S. Luke. Long-term fairness with
bounded worst-case losses. Auton. Agents Multi Agent Syst., 22(1):43–
63, 2011.

[5] L. Bulteau, N. Hazon, R. Page, A. Rosenfeld, and N. Talmon. Justi-
fied representation for perpetual voting. IEEE Access, 9:96598–96612,
2021.

[6] N. Chandak, S. Goel, and D. Peters. Proportional aggregation of pref-
erences for sequential decision making. In M. J. Wooldridge, J. G. Dy,
and S. Natarajan, editors, Proceedings of the Thirty-Eighth AAAI Con-
ference on Artificial Intelligence (AAAI), 2024.

[7] B. Codenotti and K. R. Varadarajan. Efficient computation of equilib-
rium prices for markets with Leontief utilities. In Proceedings of the
31st International Colloquium on Automata, Languages and Program-
ming (ICALP), 2004.

[8] D. Dolev, D. G. Feitelson, J. Y. Halpern, R. Kupferman, and N. Linial.
No justified complaints: on fair sharing of multiple resources. In
S. Goldwasser, editor, Proceedings of Innovations in Theoretical Com-
puter Science, 2012.

[9] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant resource fairness: Fair allocation of multiple re-
source types. In Proceedings of the 8th USENIX Symposium on Net-
worked Systems Design and Implementation, 2011.

[10] A. Igarashi, M. Lackner, O. Nardi, and A. Novaro. Repeated fair alloca-
tion of indivisible items. In M. J. Wooldridge, J. G. Dy, and S. Natara-
jan, editors, Proceedings of the Thirty-Eighth AAAI Conference on Ar-
tificial Intelligence (AAAI), 2024.

[11] M. Lackner. Perpetual voting: Fairness in long-term decision making.
In Proceedings of the 34th AAAI Conference on Artificial Intelligence
(AAAI), 2020.

[12] J. Li and J. Xue. Egalitarian division under leontief preferences. Eco-
nomic Theory, 54(3):597–622, 2013.

[13] E. Luca, Z. Nagy, and M. Berchez. Water requirements of the main
field crops in transylvania (1964–2002). Journal of Central European
Agriculture, 4(2):97–102, 2003.

[14] D. C. Parkes, A. D. Procaccia, and N. Shah. Beyond dominant resource
fairness: Extensions, limitations, and indivisibilities. ACM Transactions
on Economics and Computation (TEAC), 3(1):1–22, 2015.


