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Abstract. Envy-freeness is one of the most prominent fairness con-
cepts of indivisible goods allocation. Even though trivial envy-free
allocations always exist, rich literature shows that this is not true
when one additionally requires some efficiency concept (like, e.g.,
completeness, Pareto-efficiency, maximization of social welfare). In
fact, in such case even deciding the existence of an efficient envy-
free allocation is notoriously computationally hard. On our way to
deeply study the limits of efficient computability of such allocations,
we relax the standard efficiency concepts and analyze how it impacts
the computational complexity of the respective problems. Specifi-
cally, we allow for partial allocations (where not all goods are al-
located) and impose only very mild efficiency constraints (e.g., we
require each agent to have a positive utility from their bundle). Sur-
prisingly, even such seemingly weak efficiency requirements lead to
a diverse computational complexity landscape. We identify several
polynomial-time solvable cases, yet we also find NP-hardness for
very restricted scenarios of ternary (cardinal) utilities.

1 Introduction
Computing fair allocations of indivisible resources is an important
issue with many applications in all kinds of disciplines [88, 99, 2222].
Envy-freeness, which ensures that no agent strictly prefers the re-
sources allocated to a different agent over their own, is one of the
most prominent fairness concepts [99]. Unfortunately, envy-free allo-
cations do not always exist, and computing them is often associated
to computationally very difficult problems [88]. In consequence, re-
searchers have developed several ways to relax that fairness notion,
such as envy-free up to one good (EF1) [1111] and envy-free up to any
good (EFX) [1313].

If one has a close look, however, then one quickly realizes that
envy-freeness alone does not enforce any computational or existence
issues: allocating no resource to anyone is envy-free. Only when
adding an efficiency component, such as requiring each resource to be
allocated to someone (completeness), the picture changes. A folklore
example is an instance with n agents (say employees) and n+1 iden-
tical resources (say laptops): in every possible complete allocation
there is at least one agent a who gets at most one resource and an-
other agent a′ that gets at least two resources, so that (for reasonable
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preferences) a envies a′. While there are certainly applications where
this is indeed a problem, there is likely a trivial solution in most ap-
plications: allocating only n of the n + 1 resources (one to each
agent). Such observations lead to the main question of our paper:
which (weaker) efficiency concepts can help to identify additional
(cf. completeness) envy-free allocations and what is the consequence
on the computational complexity of finding such allocations?

We come up with two basic ideas: What if the goal is not to al-
locate all resources, but to either just allocate some resources to the
agents or just provide some utility for the agents? In each case, we
can focus on either the whole society or individual agents. More con-
cretely, we ask for an envy-free (partial) allocation that (i) allocates
at least t resources in total, or (ii) allocates at least t resources to each
agent, or (iii) has utilitarian welfare of at least t, or (iv) has egalitarian
welfare of at least t.

Note that even variants for t = 1 have meaningful (potential) ap-
plications. They allow us to ask if there is an envy-free allocation of
(some of) the resources such that (i) at least one resource is allocated,
(ii) each agent gets at least one resource, (iii) at least one agent has
a positive value for the allocated resources, or (iv) each agent has a
positive value for the allocated resources. The first two cases (i,ii)
model natural formal requirements while the other two cases (iii,iv)
model basic (individual) quality requirements.

The efficiency requirements are also relevant from the compu-
tational complexity perspective. To see this, assume—as we do in
our paper—that the resources are goods, that is, agents report non-
negative utilities for them. In this case, all our efficiency concepts for
t = 1 are significantly less demanding than multiple other prominent
efficiency concepts; for example, than completeness, as we demon-
strated using the folklore example earlier in this section. Hence, an-
alyzing computational complexity, especially showing hardness, of
these very special cases allows us to identify borders of efficient
computability more accurately than before. On the other hand, if
we find efficient algorithms for these relaxed cases, their results can
be practically interpreted as the minimum efficiency levels that can
be achieved. Indeed, given an instance of an allocation problem, by
computing the result with such an algorithm, one can argue that any
fair allocation that is less efficient is unjustified. Before we describe
our findings, we briefly review the related literature to present the
context helpful to interpret our results.
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1.1 Related Work

Computing fair and efficient allocations has recently emerged as a
very prominent stream of research in the area of fair allocation of
indivisible resources. Allocations with maximum Nash welfare are
both Pareto optimal and EF1, but computing such allocations is NP-
hard [1313]. Likewise, computing an allocation with the highest utilitar-
ian social welfare among all EF1 allocations is NP-hard even for two
agents [44]. As discussed before, the main difference of our model
is that we allow partial allocations, and consequently we consider
envy-freeness instead of its relaxation EF1.

Allowing partial allocations is an important approach to guaran-
tee the existence of EFX allocations (the existence of EFX complete
allocations is still an open question). Caragiannis et al. [1212] showed
that there always exists an EFX partial allocation with at least half
of the maximum Nash welfare. Chaudhury et al. [1414] showed that
donating at most n−1 resources can guarantee the existence of EFX
allocation such that no agent prefers the donated resources to its own
bundle, where n denotes the number of agents. This bound was latter
improved to n−2 in general and to 1 for the case with four agents [55].
Besides existence, Bu et al. [1010] studied the problem of computing
partial allocations with the maximum utilitarian welfare among all
EFX allocations. Our work differs from this stream of research in
that we focus on envy-freeness instead of EFX.

Aziz et al. [33] studied the problem of deleting (or adding) a mini-
mum number of resources such that the resulting instance admits an
envy-free allocation; which is equivalent to finding an envy-free allo-
cation with the maximum size. However, they consider ordinal pref-
erences whereas we consider cardinal preferences. Moreover, Aziz
et al. [33] considered the number of deleted resources, where the prob-
lem is NP-hard even if no resource can be deleted. In contrast, we
consider the dual parameter the lower bound on the allocated re-
sources, which allows us to identify polynomial-time solvable cases.

Boehmer et al. [77] studied the problem of transforming a given
unfair allocation into an EF or EF1 allocation by donating few re-
sources. In addition to upper bounds on the number of donated re-
sources and the decrease on the utilitarian welfare, they also con-
sider the lower bounds on the remaining allocated resources and the
remaining utilitarian welfare. Dorn et al. [1515] studied the same prob-
lem but focused on a different fairness notion. The most prominent
difference to our work is that in our model there is no given alloca-
tion.

Hosseini et al. [1818] introduced a fairness notion where agents can
hide some of the resources in their own bundles such that no agent
is envious assuming that the agents do not know the existence of the
hidden resources in other agents’ bundles. Then the goal is to find a
complete allocation and a minimum number of hidden resources such
that no agent is envious. While the idea is similar to find an envy-
free partial allocation with the maximum size, note that the hidden
resources are not deleted; their owners get utility from them just like
normal resources.

A series of works [1616, 66, 1919] studied the computational complexity
of finding an envy-free house allocation when the number of houses
is larger than the number of agents. This is equivalent to finding an
envy-free (partial) allocation that allocates exactly one resource to
each agent. Our model does not have this kind of upper bound on
the number of resources allocated to each agent. Aigner-Horev and
Segal-Halevi [11] studied the problem of finding an envy-free match-
ing of maximum cardinality in a bipartite graph. Taking the bipartite
graph as the representation of binary utilities of agents on one side
towards resources on the other side, the problem studied by Aigner-

Table 1. Summary of results. Columns denote different utility constraints
and efficiency threshold t values. Rows represent different efficiency con-
cepts E . The hardness results for t = 1 apply to every positive t as well.

Identical Binary Ternary

t = 1 t = 1 t t = 1

utilitarian social welfare (usw)

NP-h

P NP-h (FPT) NP-h

egalitarian social welfare (esw) P P NP-h

#resources allocated (size) P NP-h (FPT) NP-h

min-cardinality (mcar) P NP-h NP-h

Horev and Segal-Halevi [11] is equivalent to finding an envy-free (par-
tial) allocation with the maximum size such that each agent gets at
most one resource liked by it. Our model differs from it in that we
do not add an upper bound for agents’ bundles and we allow agents
to receive resources with utility 0. Nevertheless, many of our algo-
rithms for binary utilities use the structural properties of envy-free
matching established by Aigner-Horev and Segal-Halevi [11].

1.2 Contributions and Outline

We study the computational complexity of finding envy-free partial
allocations with mild efficiency requirements. To this end, we con-
sider a lower bound t on utilitarian welfare, egalitarian welfare, the
number of allocated resources, or the minimum bundle size among
all agents. Formal definitions can be found in Section 22. In Sec-
tion 33, we show that finding such allocations is strongly NP-hard,
even if all agents have identical preferences. In Section 44, we show
that for binary preferences all variants are polynomial-time solvable
when t = 1, but that they are in general strongly NP-hard. A sur-
prising exception is the egalitarian welfare variant (which is typically
harder than the utilitarian welfare): we show a polynomial-time algo-
rithm that finds an envy-free partial allocation where each agent ob-
tains a bundle with value at least t (for arbitrary t). To overcome NP-
hardness, we show that the utilitarian welfare variant and the num-
ber of allocated resources variant are both fixed-parameter tractable
(FPT) with respect to t11, implying that the problems can be efficiently
solved for small t. In Section 55, we go beyond binary preferences and
allow for three different utility values. We show that all variants be-
come strongly NP-hard already when t = 1 for any ternary utility
values {0, v, u} with 0 < v < u. See Table 11 for an overview of our
results. Some details (e.g., of proofs of theorems marked with (⋆)
will be presented in the full version of this paper in the future.

2 Preliminaries

We fix a collection R of m resources and a set A of n agents. Each
agent a ∈ A reports its cardinal utility from each resource via the
utility function ua : R → N0.22 We assume additive utilities, hence,
with a slight abuse of notation, for some set B ⊆ R of resources,
the utility ua(B) of agent a ∈ A from B is the sum of the agent’s
utilities for each resource in B, i.e., ua(B) :=

∑
r∈B ua(r).

We often use specific classes of cardinal utilities reported by
agents. Identical utilities denote a family of utilities in which ev-
ery agent’s utility functions are the same. The utilities are binary if

1 A problem is fixed-parameter tractable with respect to some parameter k if
it can be solved in f(k)|I|O(1) time, where |I| denotes the input size.

2 N0 denotes the set of all nonnegative integers.



agents’ utilities use only values 0 or 1. We also define ternary utili-
ties, where there are always three possible values of utility that agents
can report.

An allocation π : A → 2R assigns each agent a ∈ A its bun-
dle π(a) for their private use, i.e. π(a) ∩ π(a′) = ∅ for each dis-
tinct a, a′ ∈ A. If π(i) = ∅, it is an empty bundle. If π is a parti-
tion of R, we say that π is complete, otherwise we call it partial.
We call the smallest number mcar(π) := mina∈A |π(a)| of re-
sources allocated to some agent the min-cardinality of π, whereas
by size(π) :=

∑
a∈A |π(a)| we denote the total number of re-

sources allocated by π.
Given an allocation π : A → 2R and some collection (ua)a∈A

of utility functions, we say that agent a ∈ A is envious regard-
ing (ua) under π if there is another agent a′ ∈ A whose bun-
dle π(a′) is preferred by a over their own bundle π(a); formally
ua(π(a

′)) < ua(π(a)). An allocation π is envy-free regarding (ua)
if no agent is envious under π. The utilitarian social welfare usw(π)
of π regarding (ua) is the sum of the utilities of agents for their
bundles, i.e., usw(π) :=

∑
a∈A ua(π(a)). Analogously, egalitar-

ian social welfare esw(π) is the minimum of the agent’s utilities,
i.e., esw(π) := mina∈A ua(π(a)). (We omit “regarding (ua)” and
“under π”, respectively, when the context is clear.)

Our problem of interest is a computational problem of deciding if,
for a given input, one can find allocations that are envy-free and ef-
ficient. Following the introduction, we define our problem generally,
using an efficiency measure placeholder E to be substituted by any
of the efficiency measures of our interest: utilitarian and egalitarian
social welfare, size, and min-cardinality.

E -ENVY-FREE PARTIAL ALLOCATION (E -EF-PA)
Input: A set R of resources, a set A of agents, a collec-
tion (ua)a∈A of utility functions ua : R → N0 and an efficiency
threshold t.
Question: Is there an envy-free allocation π such that E(π) ≥ t?

3 Identical valuations
The case in which all agents have identical preferences is potentially
simpler to solve than the general case when finding our desired al-
locations. However, we show even in this scenario, our problem is
NP-hard for each efficiency notion we consider.

We show hardness via a reduction from the 3-PARTITION prob-
lem [1717]. The main idea is to have one resource for each number of
the 3-PARTITION instance as well as some well-designed dummy re-
sources and extra agents, ensuring that each agent receives either one
dummy resource or three non-dummy resources such that the utility
for them adds up to the same value as the agents have for a dummy
resource.

Theorem 1 (⋆). For each E ∈ {usw, esw, size,mcar} it holds that
E-EF-PA is strongly NP-hard, even if t = 1 and each agent has the
same utility function.

The presented result categorically sets the limits of our expecta-
tions, as the hardness holds for the weakest variants of efficiency
concepts, that is, when the threshold t = 1. Hence, we need to
focus on another way of constraining the agent preferences to find
polynomial-time tractable cases.

In the remaining sections, we will focus on restrictions on the set
of utilities (resp. the images of the utility functions), since it seems
essential that they are unrestricted in the above hardness reduction
for identical preferences.

4 Binary utilities
The case of binary utilities, where agents express preferences by
pointing out which resources they desire and which not, is another
natural constraint to our problems. Given that identifying exact utility
values imposes a high cognitive burden for human agents, in practice,
binary utilities are sometimes even preferred over more complicated
variants. It is then easier to elicit correct preference data and to avoid
excessive fatigue of the agents.

The good news is that for binary preferences, our problem with t =
1 is solvable in polynomial time for all the four efficiency notions. On
the negative side, t = 1 is where the good news ends. For arbitrary t,
except for esw-EF-PA, the other three efficiency concepts yield NP-
hardness. For some of these cases, however, we could find efficient
(FPT) algorithms for bounded values of the threshold t.

4.1 Egalitarian social welfare

Beginning with esw-EF-PA, we show that it is polynomial-time solv-
able by providing a reduction to computing a maximum cardinality
matching in bipartite graphs.

Theorem 2. For 0/1-utilities esw-EF-PA is solvable
in O(m2.5) time.

Proof. If t > m
n

, then no allocation can get esw(π) ≥ t. So, in
the following we assume t ≤ m

n
. Given an envy-free allocation π

with esw(π) ≥ t, we construct a new allocation π′ by keeping t ar-
bitrary resources from each agent’s bundle that are liked by the agent
and deleting the other resources. Note that π′ also satisfies envy-
freeness and esw(π′) ≥ t. Therefore, it suffices to check whether
there exists an allocation such that every agent gets exactly t re-
sources liked by it. To this end, we create a bipartite graph where
one side consists of t copies of each agent and the other side con-
sists of all resources, and there is an edge between an agent and a
resource if the agent likes the resource. Then there exists an envy-
free allocation with esw(π) ≥ t if and only if a maximum car-
dinality matching of this bipartite graph, which can be computed
in O((tn)1.5m) = O(m2.5) time [2020], saturates the agent side.

4.2 Utilizing envy-free matchings

For the other three efficiency measures, we create a bipartite graph
G = (X∪̇Y,E), where X = A, Y = R, and there is an edge
between xi ∈ X and yj ∈ Y if ui(rj) = 1. We use the con-
cept of envy-free matchings (EFM) for bipartite graphs introduced
by Aigner-Horev and Segal-Halevi [11]. A matching M in a bipartite
graph G = (X∪̇Y,E) is envy-free with respect to X if no vertex in
X \XM is adjacent to any vertex in YM , where XM (resp. YM ) rep-
resents the set of vertices from X (resp. Y ) saturated by M . Note that
each envy-free matching M in G = (X∪̇Y,E) induces an envy-free
allocation πM , where every agent gets at most one resource. Slightly
abusing the notation, we sometimes use subsets of X (resp. Y ) to de-
note the corresponding subsets of agents (resp. resources).

Aigner-Horev and Segal-Halevi [11] show that finding an envy-free
matching of maximum cardinality is solvable in polynomial time.
The idea is to first compute an arbitrary matching M of maximum
cardinality. Then, starting with each vertex from X that are not satu-
rated by M , we find M -alternating paths, which partition the vertex
set into two parts according to whether they are covered by these
paths or not. It is shown that this partition is independent of the ini-
tial matching M and that all envy-free matchings are contained in



the part not covered by the above M -alternating paths. In the fol-
lowing theorem, we summarize the findings of Aigner-Horev and
Segal-Halevi [11] related to envy-free matchings that are relevant to
our results.

Theorem 3 ([11]). Every bipartite graph G = (X∪̇Y,E) admits a
unique partition X = XS∪̇XL and Y = YS∪̇YL, called the EFM
partition of G, satisfying the following conditions:

1. Every XL-saturating matching in G[XL;YL] is an envy-free
matching in G;

2. Every envy-free matching in G is contained in G[XL;YL];
3. There are no edges between XS and YL;
4. Each vertex in YS is connected to at least one vertex in XS .

Moreover, the unique EFM partition and a maximum envy-free
matching (XL-saturating matching in G[XL;YL]) can be computed
in O(|E|

√
min{|X|, |Y |}) time.

Based on Theorem 33, we derive the following lemma, which will
be useful for designing algorithms in the remainder of this section.

Lemma 1. For any envy-free allocation, all agents from XS receive
a bundle of utility 0 and all the allocated resources are from YL.

Proof. Given any envy-free allocation π, denote by Az the set of
agents receiving a bundle of utility 0 and by Ap the set of remain-
ing agents (receiving a bundle of utility larger than 0). We construct
a new allocation π′ as follows. For each agent from Az , delete all
resources from its bundle. For each agent from Ap keep an arbi-
trary resource in its bundle with utility 1 for the agent and delete
the other resources. We show that π′ is still envy-free. Since the
original allocation π is envy-free and all agents from Az receive
a bundle of utility 0 under π, it must be that every agent from Az

values every resource allocated under π as 0, and hence no agent
from Az will envy other agents under π′. Moreover, under π′, ev-
ery agent from Ap receives a bundle of utility 1 and every agent gets
exactly one resource, so no agent from Ap will be envious. There-
fore, π′ is envy-free. Since each agent either gets nothing or gets one
resource liked by it under π′, it induces an envy-free matching M
in G = (X∪̇Y,E). According to Theorem 33, we have Ap ⊆ XL.
Since A = XS ∪XL = Az ∪Ap, we have XS ⊆ Az , which means
that all agents from XS receive a bundle of utility 0. Since π is envy-
free, it follows that all the allocated resources under π have utility 0
for agents from XS . According to Theorem 33, each resource in YS

is liked by at least one agent from XS , so all the allocated resources
are from YL.

4.3 Social welfare and allocation size

Based on Lemma 11, we can design an FPT algorithm for usw-EF-
PA. The idea is that according to Lemma 11, we just need to consider
allocations restricted to XL and YL. If |XL| ≥ t, then there is a
trivial solution following from the envy-free matching. Otherwise,
we can bound the size of the instance by a function depending only
on t.

Theorem 4. For 0/1-utilities usw-EF-PA is NP-hard and fixed-
parameter tractable with respect to t. In particular, if t = 1, then
usw-EF-PA is solvable in O(n1.5m) time for 0/1-utilities.

Proof. The NP-hardness follows from the fact that usw-EF-PA for
0/1-utilities with t setting as the maximum utilitarian social welfare
among all allocations is equivalent to the problem of deciding the

existence of a Pareto efficient and envy-free allocation, which is NP-
hard [88].

Next we show that usw-EF-PA for 0/1-utilities is fixed-parameter
tractable with respect to t. According to Lemma 11, it suffices to check
allocations that only allocate resources from YL. In addition, since in
any desired allocation agents from XS receive a bundle of utility 0,
it suffices to check allocations that only allocate resources from YL

to agents from XL. If XL = ∅, then no such allocations exists.
In the following analysis we assume XL ̸= ∅. According to The-
orem 33, there exists an envy-free matching M of cardinality |XL|
in G[XL;YL]. If |XL| ≥ t, then M induces an envy-free alloca-
tion with social welfare at least t and we are done. Otherwise, we
have |XL| < t. Since agents have binary utilities, we can partition all
resources from YL into at most 2|XL| < 2t groups according to the
subset of agents from XL who like the resource. If there is a group
with more than t2 resources, then allocating each agent from XL a
different set of t resources from this group is an envy-free alloca-
tion with social welfare t|XL| ≥ t and we are done. Otherwise, we
have |YL| < 2tt2 and then we can bound the number of all possible
allocations restricted to XL and YL by O(2t

2

t2t). Thus, the problem
is fixed-parameter tractable with respect to t.

When t = 1, it suffices to compute the EFM partition of G and
check whether |XL| ≥ 1, so the running time is O(n1.5m) according
to Theorem 33.

Next, we provide an FPT algorithm for size-EF-PA using similar
ideas. Here we just need to consider allocations restricted to YL and
we will compare the size of X (instead of XL) and t.

Theorem 5. For 0/1-utilities size-EF-PA is NP-hard and is fixed-
parameter tractable with respect to t. In particular, if t = 1, then
size-EF-PA is solvable in O(n1.5m) time for 0/1-utilities.

Proof. The NP-hardness follows from the fact that size-EF-PA for
0/1-utilities with t = |R| is equivalent to the problem of deciding
the existence of a complete and envy-free allocation, which is NP-
hard [1818, 22].

Next we show that size-EF-PA for 0/1-utilities is fixed-parameter
tractable with respect to t. According to Lemma 11, it suffices to
check allocations that only allocate resources from YL. If |YL| < t,
then there is no such allocation with size at least t. In the follow-
ing analysis we assume |YL| > t. If |X| ≤ t, then similar to
the case for usw, we can bound the number of all possible alloca-
tions restricted to YL by O(2t

2

t2t), and hence the problem is fixed-
parameter tractable with respect to t. If |X| > t, then we can find
an envy-free allocation with size at least t as follows. According to
Theorem 33, there exists an envy-free matching M of cardinality |XL|
in G[XL;YL], which induces an envy-free allocation πM . We ex-
tend πM by letting each agent from XS select a different resource
from YL \ YM until there is no remaining resource or each agent
from XS gets one resource. Denote the resulting allocation by π.
We have size(π) ≥ min{|X|, |YL|} ≥ t. According to Theorem 33,
no resource from YL is liked by any agent from XS , so π is still
envy-free.

When t = 1, it suffices to compute the EFM partition of G and
check whether |YL| ≥ 1, so the running time is O(n1.5m) according
to Theorem 33.

4.4 Min-cardinality

Finally, we consider mcar-EF-PA. The following lemma reduces
mcar-EF-PA with t = 1 to comparing the cardinality of X and YL



in the EFM partition of G.

Lemma 2. The following three statements are equivalent:

1. There exists an envy-free allocation π where every agent gets a
non-empty bundle, i.e., mcar(π) ≥ 1;

2. There exists an envy-free allocation π where every agent gets ex-
actly one resource, i.e., |π(a)| = 1 for each a ∈ A;

3. |X| ≤ |YL|.

Proof. (1) ⇐ (2): If there exists an envy-free allocation π
with |π(a)| = 1 for each a ∈ A, then clearly mcar(π) ≥ 1.

(1) ⇒ (2): Given an envy-free allocation π with mcar(π) ≥ 1,
denote by Az the set of agents receiving a bundle of utility 0 and
by Ap the set of remaining agents (receiving a bundle of utility
larger than 0). For each agent from Az , keep an arbitrary resource
in its bundle and delete the other resources. For each agent from Ap,
keep an arbitrary resource in its bundle with utility 1 for the agent
and delete the other resources. Denote by π′ the resulting alloca-
tion, where every agent gets exactly one resource. It remains to show
that π′ is envy-free. Since the original allocation π satisfies envy-
freeness and all agents from Az have utility 0 under π, it must be that
every agent from Az values every resource allocated under π as 0,
and hence no agent from Az will envy other agents under π′. More-
over, under π′, since every agent from Ap has utility 1 and every
agent gets exactly one resource, no agent from Ap will be envious.
Thus, π′ satisfies envy-freeness.

(2) ⇐ (3): Suppose that |X| ≤ |YL|. According to Theorem 33
we can find a XL-saturating envy-free matching M in G[XL;YL],
which induces an envy-free allocation πM , where every agent gets at
most one resource. To get an envy-free allocation where every agent
gets exactly one resource, we let each remaining agent corresponding
to XS select a different resource from YL \ YM . Since |YL| ≥ |X|,
there are enough remaining resources from YL \ YM . Denote the
resulting allocation by π, where every agent now gets exactly one
resource. Since there are no edges between XS and YL, all agents
corresponding to XS are non-envious. For agents corresponding to
XL, since they all have utility 1 and every agent gets exactly one
resource, all of them are non-envious. Therefore, π is envy-free.

(2) ⇒ (3): Let π be an envy-free allocation where every agent
gets exactly one resource. According to Lemma 11, all the allocated
resources are from YL. Thus, |X| ≤ |YL|.

It immediately follows that mcar-EF-PA with t = 1 is solvable
in polynomial time. We prove the NP-hardness for the general case
with arbitrary t in the following theorem. Whether the problem is
fixed-parameter tractable with respect to t is left as an open question.

Theorem 6. For 0/1-utilities mcar-EF-PA is NP-hard. If t = 1 then
it is solvable in O(n1.5m) time.

Proof. We show the NP-hardness of mcar-EF-PA by providing a
simple many-one reduction from size-EF-PA with t = |R|, which is
shown to be NP-hard in Theorem 55. Given an instance (A,R, t =
|R|) of size-EF-PA, we create an instance (A,R′, t′) of mcar-EF-
PA, where R′ contains all resources in R and also t(|R|−1) dummy
resources that are not liked by any agent, and t′ = t. It is easy to
verify that there exists an envy-free and complete allocation for the
former instance if and only if there exists an envy-free allocation such
that every agent gets exactly t resources for the latter instance.

When t = 1, according to Lemma 22 and Theorem 33, it suffices to
compute the EFM partition for G and check whether |X| ≤ |YL|, so
the running time is O(n1.5m).

5 Ternary Valuations
We have seen that our problems are tractable for binary preferences
and t = 1, which already has quite clear practical relevance as dis-
cussed in the introduction. A very natural question is whether these
positive results transfer to three different utility values. In this section
we answer this question negatively by showing strong NP-hardness
for all the four goals under any three different utility values {0, v, u}
with 0 < v < u. Before the proofs, let’s introduce a known NP-Hard
problem: Exact Cover by 3-Sets. [1717]

EXACT COVER BY 3-SETS (X3C)
Input: A set X , with |X| = 3n and a collection C of 3-element
subsets of X .
Question: Is there a subset C′ of C where every element of X
occurs in exactly one member of C′?

We start by providing a reduction from esw to the other three prob-
lems for the above ternary utilities and t = 1.

Lemma 3. Let v and u be two positive integers with 0 < v < u.
Let R be a set of resources, A be a set of agents, and (ua)a∈A be a
collection of utility functions with ua : R → {0, u, v}. Then, there
exist extended sets of resources R∗ = R∪Rshadow and agents A∗ =
A∪Ashadow, and a collection of extended utility functions (u∗

a)a∈A∗

(with u∗
a(r) = ua(r) for each a ∈ A and each r ∈ R) such that:

Regarding (ua) there exists an envy-free allocation πesw : A →
2R with esw(πesw) ≥ 1, if and only if regarding (u∗

a) there ex-
ists an envy-free allocation π∗ : A∗ → 2R

∗
with E(π∗) ≥ 1 for

each E ∈ {mcar, usw, size}33. Moreover, (R∗,A∗, (u∗
a)a∈A∗) can

be computed in linear time.

Proof. Given (R,A, (ua)a∈A), we construct (R∗ = R ∪
Rshadow,A∗ = A ∪ Ashadow, (u

∗
a)a∈A∗) as follows. For each re-

source, we create two corresponding shadow agents and two corre-
sponding shadow resources. That is, Ashadow := {a′

r, a
′′
r | r ∈ R}

and Rshadow := {r′, r′′ | r ∈ R}. We distinguish between origi-
nal agents A and shadow agents Ashadow, as well as between orig-
inal resources R and shadow resources Rshadow. The idea is to de-
fine utilities functions (u∗

a)a∈A∗ such that whenever any agent gets
a resource, each shadow agent will also require a shadow resource,
which in turn ensures that every agent gets a resource of positive
value. Formally, (u∗

a)a∈A∗ is defined as follows (see also Table 22).

• For each original agent a and each original resource r, u∗ is iden-
tical to u, i,e., u∗

a(r) = ua(r).
• Each original agent is interested in all the shadow resources and

values each of them as v.
• Each shadow agent is interested in all the shadow resources and

value each of them as u.
• Each shadow agent a′

r or a′′
r ∈ A∗

shadow is also interested in its
unique corresponding original resource r ∈ R, i.e., u∗

a′
r
(r) =

u∗
a′′
r
(r) = v, and values all other original resources as 0.

r̄ ∈ R \ {r} r ∈ R r∗ ∈ Rshadow

a ∈ A ua(r̄) ua(r) v

a′r, a
′′
r ∈ Ashadow 0 v u

Table 2. Utility functions of the agents in the proof of the Lemma 33

Next, we show that for (R∗,A∗, (u∗
a)a∈A∗) and any E , E ′ ∈

{mcar, usw, size} it holds that for every envy-free allocation π with

3 Note that given any πE for E ∈ {esw,mcar,usw, size}, we can compute
each of the respective other allocations in polynomial time.



E(π) ≥ 1 we also have E ′(π) ≥ 1. By definition, it is obvious
that an envy-free allocation π with mcar(π) ≥ 1 or usw(π) ≥ 1
must in both cases have size(π) ≥ 1. Let us conversely assume
that there exists some envy-free allocation π with size(π) ≥ 1
for (R∗,A∗, (u∗

a)a∈A∗). We want to show that mcar(π) ≥ 1 and
usw(π) ≥ 1 also hold for (R∗,A∗, (u∗

a)a∈A∗). Since size(π) ≥ 1,
at least one resource r is allocated. If r is not a shadow resource,
then at least one of the two corresponding shadow agents a′

r or a′′
r

gets a shadow resource. Thus, at least one shadow resource is allo-
cated under π. Considering that each shadow agent can only gain a
maximum value of v from the shadow resources, and u > v, the fact
that at least one shadow resource is allocated under π makes every
shadow agent require at least one shadow resource with value at least
u. Since |Ashadow| = |Rshadow| = 2|R|, each shadow agent should re-
ceive exactly one shadow resource. Since each original agent values
each shadow resource as v, this enforces that each original agent gets
a bundle with value at least v. Therefore, we have mcar(π) ≥ 1 and
usw(π) ≥ 1.

To prove the lemma, it remains to show that there exists an envy-
free allocation πesw with esw(π) ≥ 1 for (R,A, (ua)a∈A) if and
only if there exists an envy-free allocation πsize with E(πsize) ≥ 1
for (R∗,A∗, (u∗

a)a∈A∗).
(=⇒) Assume there exists an envy-free allocation πesw with

esw(πesw) ≥ 1 for (R,A, (ua)a∈A). A desired allocation πsize for
(R∗,A∗, (u∗

a)a∈A∗) can be constructed in the following way. Anal-
ogously to πesw, we let πsize

a = πesw
a for each original agent a ∈ A.

Aside from that, each shadow agent is assigned an arbitrary shadow
resource. Clearly, original agents will not envy each other, and each
of them receives a bundle with positive value v or u. Consequently,
original agents will not envy shadow agents either, since they per-
ceive the value of each shadow agent’s bundle to be exactly v. Mean-
while, shadow agents will not envy original agents because, in their
views, the value of each shadow agent’s bundle is u, whereas the
value of any original agent’s bundle does not exceed v.

(⇐=) Assume there exists some envy-free allocation πsize with
size(πsize) ≥ 1 for (R∗,A∗, (u∗

a)a∈A∗). Recall that in πsize, each
shadow agent must get exactly one shadow resource, and each orig-
inal agent must get a bundle with positive value. Thus, we have
esw(πsize) ≥ 1. We create an allocation πesw for (R,A, (ua)a∈A)
in a straight-forward way by setting πesw

a := πsize
a for each orig-

inal agent a ∈ A. Note that this is indeed a well-defined allo-
cation for (R,A, (ua)a∈A) since πsize allocates shadow resources
only to shadow agents. Since the original agents do not envy
each another in πsize for (R∗,A∗, (u∗

a)a∈A∗), and the utility func-
tions of the original agents for original resources are identical for
(R∗,A∗, (u∗

a)a∈A∗) and (R,A, (ua)a∈A), it follows that πesw is
envy-free for (R,A, (ua)a∈A).

According to Lemma 33, if we show that esw-EF-PA is strongly
NP-hard for ternary utility values 0 < v < u, then we will get the
strong NP-hardness of E-EF-PA for each E ∈ {mcar, usw, size}
for free. Our main result in this section is that all the four goals are
strongly NP-hard for ternary utility values 0 < v < u even if t = 1,
stated as follows.

Theorem 7. For each E ∈ {esw,mcar, usw, size}, E-EF-PA is
strongly NP-hard, even if each agent assigns to each resource only
values from {0, u, v} with v, u ∈ N, 0 < v < u, and t = 1.

By Lemma 33, it suffices to show the strong NP-hardness for esw-
EF-PA. To this end, we make a case distinction over the values
of u and v and show all cases via different reductions from the

NP-hard EXACT COVER BY 3-SETS (X3C) problem [1717]. Given
a multiset X = {x1, x2, . . . , x3n}, with |X| = 3n, and a collec-
tion C = {S1, S2, . . . , Sm} of 3-element subsets of X , X3C asks
whether there is some C′ ⊆ C where every element of X occurs
in exactly one member of C′. We assume without loss of generality
that m > 3n. If this requirement is not fulfilled then we can easily
obtain an equivalent instance which fulfills it by adding some dummy
3-sets. Let’s start with u = kv, k ≥ 3.

Lemma 4 (⋆). esw-EF-PA with ternary utility values {0, u, v}, u =
kv > 0, k ≥ 3, and t = 1 is strongly NP-hard.

Next we consider the case with u = 2v. The distinctive feature of
the following proof, compared to the previous one, lies in our cre-
ation of standard agents and special resources as benchmarks, en-
suring that the value of the bundle desired by each agent exceeds
a certain constant value. Additionally, we introduce a large number
of observers and corresponding blank resources to monitor potential
combinations of resources that may interfere with the reduction.

Lemma 5. esw-EF-PA with ternary utility values {0, u, v}, u =
2v > 0, and t = 1 is strongly NP-hard.

Proof. The hardness proof also proceeds by a reduction from X3C.
Given an instance (X,C) of the X3C, we construct an instance of
I = (R,A, (ua)a∈A, t = 1) of the esw-EF-PA problem as follows.

• There are m cover agents AC = {a1, a2, . . . , am}, 3 standard
agents b, c, d, and a set W of observers (of finite size to be speci-
fied later), i.e., A = AC ∪ {b, c, d} ∪W .

• There 3n normal resources RN = {r1, r2, . . . , r3n}, n small
resources RS = {s1, s2, . . . , sn} , 2(m − n) dummy resources
RD = {d1, . . . , d2(m−n)} and a finite number of blank resources
RB (where |RB | = 2|W|) and 4 special resources r∗1 , r

∗
2 , r

∗
3 , r

∗
4 ,

i.e, R = RN ∪RS ∪RD ∪RB ∪ {r∗1 , r∗2 , r∗3 , r∗4}.
• For each cover agent aj and each normal resource ri, the util-

ity function is defined such that uj(ri) = v if xi ∈ Sj and
uj(ri) = 0 otherwise. Besides, each cover agent values each
small resource as v. In addition, each cover agent values each
dummy resource and each special resource as 2v. The cover agents
are not interested in blank resources.

• For each standard agent and each special resource, the utility func-
tion is defined as described in the table below and the standard
agents are not interested in any of the other resources:

r∗1 r∗2 r∗3 r∗4

b 2v 0 2v 0

c 2v v 2v v

d 0 0 2v 0

Table 3. Utility functions of the agents in the proof of the Lemma 55

• Each observer assigns value 2 to each blank resource and each
special resource. In particular, there are three different kinds of
observers where we only describe which other resources have non-
zero value: (1) Observers wi,j;k of type 1: An observer wi,j;k val-
ues the two normal resources ri, rj , and one dummy resource dk
at 2v, respectively. (2) Observers w′

i;j;k of type 2: An observer
w′

i;j;k values the normal resource ri and the dummy resource dj
and the small resource sk at 2v, respectively. (3) An observer w∗

values every small resource and every dummy resource at 2v.

Overall, we create
(
3n
2

)
∗m+ 3m ∗ n ∗ 2(m− n) + 1 observers.

Thus, there are O(n2m) numbers of observers and blank resources.



Assuming that there is solution for the constructed instance I of esw-
EF-PA, we have the following observations.

Ob. 1. We can take a look at standard agents at first. Since each agent
has to get positive value, the standard agent d will get r∗3 .
Then, the standard agent b will get r∗1 and the standard agent
c will get r∗2 and r∗4 . Since c gets r∗2 and r∗4 , each of the cover
agents and the observers will require a value of at least 4v.

Ob. 2. The normal resources, dummy resources and small resources
can only be allocated to the m cover agents. This is because
cover agents are not interested in blank resources and the sum
of the value that these three kinds of resources can provide is
at most 4mv.

Ob. 3. It follows that each cover agent gets utility exactly 4v. Thus,
if a cover agent gets 2 dummy resources, he cannot get any
other resources.

Ob. 4. Since the observers can only get blank resources. Each ob-
server will get exactly two blank resources.

Ob. 5. From the previous observations 1–4, we can claim that each
resource is allocated to one agent in this allocation.

Ob. 6. No cover agent can get three different kinds of resources.
Otherwise, some observer w′

i;j;k of type 2 will envy.
Ob. 7. No cover agent can get one dummy resource and one small

resource. Assume this was the case, then this agent needs an-
other resource to ensure the bundle is of value at least 4v.
However, this resource cannot be a normal resource accord-
ing to observation 6, and it cannot be a small or dummy re-
source since otherwise observer w∗ would envy this agent.

Ob. 8. No cover agent receives one dummy resource and one normal
resource. Again, another resource would be needed, which
cannot be a dummy resource because of observers of types 2
and cannot be a normal resource because of observers of type
1.

Ob. 9. From the previous observations 3,6–8, we can claim that if
some cover agent gets a dummy resource then it will get ex-
actly two dummy resources and nothing else. Thus, there are
m−n cover agents who get 2(m−n) two dummy resources.

Ob. 10. The remaining n cover agents get normal resources and small
resources and each of them get exactly 1 small resource. This
is because the value that each of them can get from normal
resources is at most 3v. According to the pigeonhole princi-
ple, there is and can only be one small resource for each cover
agent.

We show that (X,C) is a YES-instance if and only if I is a YES-
instance.

(=⇒) Since (X,C) is a YES-instance, there exists a subset C′ ⊆
C with |C′| = n such that every element of X occurs in exactly one
member of C′. If Sj ∈ C′, we allocate the 3 corresponding normal
resources to aj such that the value that aj can get is exactly 3v for
now. In addition, he will also get 1 small resource and finally get the
value 4v. If Sj /∈ C′, we allocate 2 dummy resources and the value
is also 4v. In addition, each observer gets 2 blank resources and the
value is also 4v. Finally, b gets r∗1 , c gets r∗2 and r∗4 , d gets r∗3 . In this
case, no one envies the other. Thus, I is also a YES-instance.

(⇐=) Since I is a YES-instance, combining the observations
above, note that there are n agents aj who only get three normal
resources Ij = {ija, ijb, ijc} and one small resource such that we
can find n corresponding set Sj = {xja, xjb, xjc}. We can find ex-
actly n such disjoint sets. This induces a feasible solution C′. Thus,
(X,C) is a YES-instance.

Finally, we consider the case when u is not divisible by v. The fol-
lowing proof, while similar to the previous one, involves additional
considerations. These arise primarily because u may be significantly
greater than v. For some agents, in order to achieve a value exceeding
u or even 2u solely through resources valued at v, they would need
to acquire a multiple of these resources.

Lemma 6 (⋆). esw-EF-PA with ternary utility values {0, v, u =
kv + c} for v > c > 0, k > 0 and t = 1 is strongly NP-hard.

Now combining Lemma 33 to 66 we get the claim in the Theorem 77.

6 Conclusions
We studied how to allocate indivisible resources to agents in an envy-
free manner by relaxing the common requirement that all resources
should be allocated. We considered envy-free partial allocations that
can provide at least some utilities or allocate some resources from
both systematic or individual perspectives, and we obtained com-
prehensive results under various classes of utilities. While all prob-
lems we considered are NP-hard under identical utilities, we identi-
fied many tractable results for binary utilities and showed interesting
connections to matching problems on bipartite graphs. For ternary
utilities, it is somewhat surprising that all problems we studied are
NP-hard even if we only require the bare minimum of efficiency or
cardinality. Our results provide a more fine-grained view of the com-
putational complexity of finding efficient envy-free allocations.

Our work can be extended in several directions. First, our results
showing that some cases are tractable under binary utilities but all
scenarios become NP-hard under ternary utilities form a stark con-
trast worth of being further investigated. In particular, it is interesting
to study bivalued utilities, with utilities taking one of two values but
not necessarily 0 and 1, that lie between binary and ternary utilities.
In the full version of the paper, we provide some initial results for 1/2
utilities, where we show that when t = 1 all the four efficiency mea-
sures are equivalent, and we can reduce the problem to the case where
each agent can get at most two resources. Second, so far we assumed
all resources are goods. A natural extension is to study chores or
mixed resources. Note that for chores it is perhaps even more mean-
ingful to consider the efficiency measures size and mcar since the
planner might want to distribute as many tasks to agents as possible.
Here a relevant result is that for chores and binary values (or even
binary marginals), there always exists an envy-free allocation with at
most n − 1 unallocated resources [2121]. Finally, one can also study
equitability instead of envy-freeness in our setting. We note that for
identical utilities, these two fairness notions are equivalent. For bi-
nary utilities, the problems seem to be easier for equitability since all
agents have to get identical utilities. For example, it is easy to show
that maximizing the utilitarian or egalitarian welfare, for any t, can
be reduced to the maximum cardinality matching problem (similarly
as done in Theorem 22).
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