
Adjusting Adjusted Winner
Robert Bredereck1, Eyal Briman2, Bin Sun1 and Nimrod Talmon2

1Institut für Informatik, TU Clausthal
2Ben-Gurion University of the Negev

Abstract. The Adjusted Winner method (AW) is frequently used to
fairly divide goods between two agents. In some of its runs, goods
may be split or transferred between the agents, a phenomenon that
may lead to conflicts between the participating agents. To address
this issue, we aim to identify situations in which such conflicts do
not arise; specifically, we describe an approach to avoid these con-
flicts – which consists of the removal of a minimum number of goods
as a preprocessing phase. We thoroughly examine the computational
complexity of the corresponding combinatorial problem and show
that, while the problem is generally intractable, there are several
ways to cope with its computational hardness. We complement our
theoretical analysis with computer-based simulations.

1 Introduction

The Adjusted Winner (AW) method is a widely recognized fair di-
vision technique used for allocating goods between two agents.
Renowned for its simplicity and effectiveness in achieving fairness
and efficiency, it has gained popularity in practical scenarios involv-
ing resource allocation and has garnered considerable attention in
scholarly discussions. Despite its merits, the AW method occasion-
ally produces outcomes that lead to conflicts. These conflicts arise
when certain goods are divided in the allocation, resulting in splits
that trigger disagreements among participants due to differing pref-
erences and valuations of goods. Our focus is on addressing the issue
of conflicts stemming from splits that emerge during the application
of the AW method. Our primary objectives encompass two aspects:
firstly, we seek to pinpoint the structural properties of input scenarios
that are prone to producing splits in allocations. Secondly, we intro-
duce a novel combinatorial problem that involves the pre-selection
of a subset of available goods before running the AW method. This
selection process is strategically designed to ensure that applying the
method to this pre-elected subset will eliminate the possibility of any
splits, thus presenting a preemptive resolution to the conflict issue.

Additionally, we delve into an examination of the computational
complexity associated with the proposed combinatorial problem. We
show that the problem is inherently computationally intractable. Sub-
sequently, we explore various strategies to manage and mitigate this
computational complexity, thereby offering practical approaches to
address the challenge. In summary, this paper contributes to a deeper
understanding of conflicts arising from splits in the Adjusted Winner
method and proposes novel approaches to preemptively resolve such
conflicts through careful good selection. By investigating the com-
putational aspects, we pave the way for practical implementations
that enhance the utility of the Adjusted Winner method in real-world
allocation scenarios.

Motivation. The basic motivation is to avoid dividing indivisi-
ble goods. The AW method can be particularly problematic when it
suggests splitting an indivisible item. Consider these two examples:
• In the case of a divorcing couple, the AW method might suggest

splitting a truly indivisible item like a dog or a house. If the house
holds significant value for one partner, neither sharing it nor sell-
ing it and dividing the money would be acceptable, especially if
one partner perceives a higher ideological value.

• Imagine two children dividing items from a shared room. The
AW method might require numerous transfers. Our model reduces
transfers by removing some items from division, assigning re-
maining ones to the child who values them most. This approach
makes “no transfer” sensible, as items can be assigned to the one
with higher value, with some items shared publicly or donated.

Removing goods from the division process would indeed sacri-
fice Pareto-optimality. However, whether the division based on a
big difference in valuations between players is necessarily beneficial
to the players remains uncertain. Additionally, aside from Pareto-
optimality, equitability is rarely achieved. The only axiom that would
be restored is envy-freeness. It’s important to note that splitting an
item is quite different from deleting it. Splitting an item per the AW
method requires clear ratios, while deleting an item can mean mak-
ing it publicly available for the couple or selling it. However, when
selling, the price does not translate directly to points or tokens. By
restructuring the process, we aim to address these concerns while
acknowledging the trade-offs involved, such as sacrificing Pareto-
optimality for improved fairness and envy-freeness.

Related Work

We discuss related work on the adjusted winner method, on control
in elections, and on conflict resolution in fair division.

The Adjusted Winner (AW) method. The Adjusted Winner
(AW) procedure is a well-known approach that aims to yield allo-
cations satisfying multiple fairness criteria and has been tested and
evaluated in real-world scenarios and simulations [2, 17, 15, 16, 9,
7]. Specifically, AW allocations exhibit envy-freeness, equity, Pareto
optimality, and minimally fractional divisions. Notably, it has been
observed that the Adjusted Winner with continuous strategies may
not guarantee pure Nash equilibria. However, it has been established
that each instance of the Adjusted Winner procedure has an ϵ-Nash
equilibrium for every ϵ > 0 [8, 3].

Control in elections. In our paper, we allow for the deletion of
certain goods from an instance of AW, so that some properties can
be achieved. In this context, we mention work on control in elec-
tions [4, 10], which is concerned with external agents that can alter

the structure of a given election to achieve some goal (usually, in
elections, the goal is to ensure the winner).

Conflict resolution. From a conflict resolution point of view,
one lesson from the biblical story about the judgement of Solomon
(I Kings 3) is that, while splitting some element (in the case of
Solomon, a baby) may be fair in some sense, it is not always de-
sired. In our paper, we also aim to avoid the necessity of splitting a
good between the agents. Indeed, the topic of conflict resolution in
the fair division is very vast [8, 6]. In this study, we explore the ad-
justed algorithm as a conflict resolution procedure for two players in
the context of fair division with additive valuations of goods and thus
we also mention the work of [13].

2 Preliminaries
2.1 A Formal Model of Fair Division

An instance of a standard model of fair division includes:

• A finite set of participants: P = {1, 2, . . . , n}.
• A finite set of indivisible goods: W = {w1, w2, . . . , wm}.
• Utility function for each participant i, denoted ui, where ui(W

′)
represents the value that participant i assigns to a subset W ′ ⊆W
of goods. This utility function is referred to as additive since the
utility Ui of participant i for their allocated goods W ′

i equals the
sum of the values assigned to the goods:

Ui(W
′
i) =

∑
w∈W ′

i

ui(w) . (1)

• This allocation is denoted by A = (W1,W2, . . . ,Wn), where
Wi ⊆ G represents the allocation of goods to participant i.

Example 1. Consider the following example: two artists, A and B,
due to certain special circumstances, must part ways and divide the
seven paintings they had collaboratively created. Among these seven
paintings {w1, . . . , w7}, w1 is exceptionally valuable and extraordi-
narily successful, while w7 is rather less successful. The evaluations
of the seven paintings by the two artists are as follows:

Artist w1 w2 w3 w4 w5 w6 w7

A 41 12 12 12 12 12 1
B 60 8 8 8 8 8 2
Table 1. Artist valuations of different paintings

Using the AW method would necessitate cutting the most valuable
painting w1 (2

1
≥ 3

2
≥ 60

41
), which is unacceptable for such a mas-

terpiece. Therefore, a more viable solution is proposed: donate the
least desirable painting w7.

Under this solution, A would receive five paintings of moderate
value, while B would receive the most valuable painting. This so-
lution ensures that the highly valuable painting is preserved intact
and eliminates the need for swapping paintings between the artists,
while still ensuring that both artists receive equal overall value. Con-
sequently, exploring the AW method and considering the possibility
of discarding a resource proves to be both valuable and fair. This
approach strikes a balance by preserving the integrity of the artwork
and maintaining fairness in value distribution.

The Adjusted Winner Method (AW). The Adjusted Winner
method (AW) was developed by Brams and Taylor for fairly dividing
k divisible goods between two agents. Let W = {w1, w2, . . . , wm}
be the set of goods or issues under consideration. The utilities of
agent 1 and agent 2 for the good wj are denoted by u1(wj) ∈ N

and u2(wj) ∈ N, respectively. The sums of their utilities, (i.e
the total number of tokens available for each agent) are such that∑m

j=1 u1(wj) =
∑m

j=1 u2(wj) = 100. The bundles allocated
to agent 1 and agent 2 are denoted by W ′

1 and W ′
2, respectively,

and their utilities are computed by Ui(W
′
i) =

∑
w∈W ′

i
ui(w) for

i ∈ {1, 2}.
Minimizing Conflicts in AW. Our primary motivation in this

work is to prevent conflicts that may arise in the output of the ad-
justed winner procedure, by removing minimal number of goods,
necessary for the AW to work without conflicts.

Our point of view is that a good that is divided by the algorithm and
also a good that is transferred by the algorithm may cause personal
conflicts between the agents, compared to runs of the algorithm in
which such operations do not occur. Specifically, we aim to ensure
that no good is divided between the two agents, or that no goods
are transferred between them. Therefore, in the following sections,
we provide some definitions to establish the core methodology and
framework for this study; this allows us to be able to have a clear,
formal model that corresponds to such conflict minimization.

Note that we study two problems: One, the No Transfer Problem,
in which we aim to reach a setting in which AW does not do any
transfer (and thus, of course, also no splits); and another, the No Split
Problem, in which we aim to reach a setting in which we do not
mind if AW does some transfers, but we do not wish it to make any
splits (i.e., we wish to keep all goods indivisible). In both problems,
we wish to reach the corresponding situation by removing a small
number of original goods.

A Generalization of Adjusted Winner (GAW). In order to
formally define the two problems discussed in this work we intro-
duce the following, generalized version of the Adjusted Winner al-
gorithm termed Generalized Adjusted Winner. It is structured into
three steps. This generalized adaptation involves initializing a thresh-
old d, which serves as the parameter representing the maximum al-
lowable difference between the utilities. This threshold is defined as
d = |U1(W

′
1) − U2(W

′
2)|. (In the original problem, d is set to be

0.) Additionally, we modify the number of tokens available for each
agent to be a parameter z, rather than a constant 100. Hereafter, when
referring to the Adjusted Winner algorithm, we denote the General-
ized Adjusted Winner as AW.

3 Avoiding-Transfers Problem (AWNT)
We introduce the AWNT problem, which seeks to determine whether
the deletion of at most k goods, resulting in a subset of m−k goods,
exists to impede the transfer of goods between the agents during the
execution of the AW procedure. In essence, this problem poses a
decision-based inquiry wherein, given an instance, the task is to as-
certain if, when applying the GAW algorithm to it, only Step 1 is
executed (and not Step 2 and 3).

Definition 1 (AWNT). Given an instance W of m goods, n utility
functions of n agents, and a threshold d, the objective is to identify if
there exists a subset W ′ ⊆ W of at most k ≤ m goods that can be
removed, ensuring no transfers of goods occur when executing the
AW method on subset W ′ with a threshold d.

It is useful to consider an equivalent formulation of AWNT.

Definition 2 (AWNT, alternative definition). Here, we are given:

• A matrix A ∈ N2×m
0 where each cell A[i][j] ∈ N0 represents the

utility ui(wj) that agent i ∈ {1, 2} assigns to good wj ∈ W .
Additionally,

∑m
j=1 A[1][j] =

∑m
j=1 A[2][j] = z.

Algorithm 1 Generalized Adjusted Winner Method (GAW)
Given an input (utilities matrix) uij

Given an input (utility difference threshold) d
Initialize W ′

1 and W ′
2 as empty bundles (W ′

1 = W ′
2 = ())

Step 1 (Initial allocation):
for each good j do

if agent 1 values j higher than agent 2 then
Allocate j to agent 1 (add j to W ′

1)
else

Allocate j to agent 2 (add j to W ′
2)

Step 2 (Possible transfers):
if U1(W

′
1) > U2(W

′
2) then

Sort, increasingly, the goods allocated to agent 1 by u1(wj)

u2(wj)

while |U1(W
′
1)− U2(W

′
2)| > d do

Transfer the next good in W ′
1 to W ′

2, unless doing so results
in U2(W

′
2) > U1(W

′
1)

Sort, increasingly, the goods allocated to agent 2 by u2(wj)

u1(wj)

while |U2(W
′
2)− U1(W

′
1)| > d do

Transfer the next good in W ′
2 to W ′

1, unless doing so results
in U1(W

′
1) > U2(W

′
2)

Step 3 (Possible split):
if |U1(W

′
1)− U2(W

′
2)| > d then

if U1(W
′
1) > U2(W

′
2) then

Transfer a fraction p ∈ (0, 1] from the next good in W ′
1 to

W ′
2 so that |U1(W

′
1)− U2(W

′
2)| ≤ d

else
Transfer a fraction p ∈ (0, 1] from the next good in W ′

2 to
W ′

1 so that |U2(W
′
2)− U1(W

′
1)| ≤ d

• An integer k ≤ m – the number of columns to be deleted.
• A threshold d – the difference between the agents’ utilities.

The problem is to find m−k columns – 1, . . . ,m−k – that satisfy:

|
m−k∑
j=1

I(A[1][j], A[2][j])−
m−k∑
j=1

I(A[2][j], A[1][j])| ≤ d (2)

where

I(x, y) =

{
x, if x > y

0, otherwise

Observation 1. The AWNT matrix variation problem is equivalent
to the original AWNT problem, as the solution for the AWNT matrix
variation is the same as the solution for the original AWNT problem.

3.1 Computational Intractability (of AWNT)

Our first interest is in the computational complexity of AWNT.

Theorem 1. AWNT is weakly NP-hard.

Proof. We provide a reduction from a restriction of the Subset Sum
problem known as weakly NP-hard [14, 11] in which we have num-
bers S = {a1, . . . , am}, a bound B, (this is the restriction) m and
each ai ∈ S divides B, and the task is to decide whether there is a
subset of S that sums to B (NP-hardness proof for this Subset Sum
variant is deferred to the full version). We reduce as follows:

• Initialize the matrix A (as described in Definition 2).
• Append an additional row to matrix X to represent the target sum

B: set the last element of this row to B so that A =

[
A 0
0 B

]
.

Parameter Complexity class
m FPT
d Para NP-Hard

m− k W-h (using [1])
k W-h
z FPT

Table 2. Parameters and Complexity: z number of tokens to be distributed
among the items according to agent preferences, m- number of goods, k-
number of goods to delete, d- threshold.

• Scale the entire matrix by a factor of m.
• Modify A (to ensure equal row sums): compute z – the sum of el-

ements in the first row of A (excluding the last element); compute
S, the sum of elements in the second row of A; adjust A[2][m],
the last element of the second row, to match the sum of the first
row: A[2][m] = A[2][m] + (z − S).

• Modify A (to ensure A[2][j] > A[1][j] for all j ∈ {1, · · · ,m}
and A[2][m] < A[1][j]): for each element A[2][j] in the second
row (except the last) – while A[2][j] is greater than A[1][j]: de-
crease A[2][j] by 1 until it is less than A[1][j]. If A[2][j]− 1 < 0,
continue to the next value without decreasing. Then, subtract
m − 1 tokens from A[2][1]; and, introduce an additional token
to each cell A[2][j], where j ∈ {2, · · · ,m}.

Correctness follows as column m+1 could not be deleted; then, a
solution to AWNT corresponds to a Subset Sum solution as all non-
deleted goods are assigned to Agent 1.

3.2 Parameterized Complexity (of AWNT)

We analyze the parameterized complexity of AWNT. The detailed
proofs will be presented in the full version of this paper in the future
and the results are given in Table 2.

3.3 Approximation Algorithms (of AWNT)

We consider approximating AWNT; first, we wish to minimize the
difference between the utilities d.

Theorem 2. Unless P = NP, for any approximation ratio, there is
no polynomial-time algorithm that provides a multiplicative approx-
imation guarantee to minimize the threshold d (AWNT).

Proof. Towards a contradiction, assume such an approximation al-
gorithm A with an approximation ratio r exists. For the whole set of
instances of AWNT, we can divide them into two sets: I0 and I+. I0
stands for the instances where d = 0 is feasible and I+ stands for
the instances where d = 0 is not feasible.

For any instance I ∈ I0, the output of the approximation algo-
rithm A must be 0. Otherwise, the approximation ratio is infinity. For
any instance I ∈ I+, the output of the approximation algorithm A
must not be 0. Otherwise, the algorithm is not correct. Thus, the algo-
rithm A is a polynomial algorithm that could decide whether d = 0
is feasible for I . However, we already know that AWNT with d = 0
and k < n is weakly NP-Hard from Theorem 1. Contradiction.

Next, we present a new optimization problem called AWNT-k:

Definition 3 (AWNT-k). Let the minimal k Adjusted Winner No
transfer (AWNT-k) be an optimization version of the AWNT problem
that minimizes k, the number of goods to delete while maintaining
|U1(W

′
1)− U1(W

′
2)| ≤ d.

We introduce the following two problems:

• 1
2

-Balanced Subset Sum: Given a set of integers S =
{a1, a2, · · · , an} and a target sum B, determine if there exists a
subset A of integers from S that sums up to B and |A| = ⌊ 1

2
|S|⌋.

• 1
k

-Balanced Partition: Given a set of integers S =
{a1, a2, · · · , an}, determine whether there exists a subset
A of integers from S that sums up to 1

2

∑
s∈S

s and |A| = ⌊ 1
k
|S|⌋.

Claim 1. 1
2

-Balanced Partition is weakly NP-Hard, so 1
2

-Balanced
Subset Sum is also weakly NP-Hard.

Theorem 3. For any k such that 2 ≤ k < n, 1
k

-Balanced Partition
is weakly NP-Hard.

The proof is deferred to the full version of the paper.

Theorem 4. Unless P = NP, for any approximation ratio, there is
no polynomial-time algorithm with a multiplicative approximation
guarantee to minimize the number of goods k to delete (AWNT-k).

Proof. We reduce 1
k

-Balanced Partition to AWNT-k. For an instance
of 1

k
-Balanced Partition S, we create an instance A of AWNT-k:

A =
[
m∗ a1+m a2+m ··· ao+m ··· an+m B+m∗−s B
0 0 0 ··· 0 ··· 0 B+lm+m∗ B+om+m∗

]
with l = n−⌊n

k
⌋, o = ⌊n

k
⌋, m is a large enough number, m∗ = mn,

s =
n∑

i=1

ai, and B = 1
2
s. Wlog., we assume that is n

k
is an integer,

s.t. l = (k − 1)o. Now we will have further observations.

• Exactly one good of the last two goods should be removed. Oth-
erwise, agent 2 gets either 0 or a too large number.

• The first good cannot be removed; this can ensure that agent 1 gets
at least m∗.

• If the last but one good is removed, then exactly l more goods have
to be removed; if the last one good is removed, then exactly o more
goods have to be removed. The latter is the optimum solution.

We show that S is a YES-instance iff A is a YES-instance.
(=⇒) Since S is a YES-instance, there is a subset A with

∑
s∈A

s =

1
2

∑
s∈S

s and |A| = ⌊ 1
k
|S|⌋ = o. Then, we get two solutions for A:

(1) Deleting the last good and exactly o other goods corresponding to
the goods in A. In this case, either of the two agents gets B + lm+
m∗. (2) Deleting the last but one good and exactly l other goods
corresponding to the goods in S\A. In this case, either of the two
agents gets B + om+m∗.

(⇐=) Since A is a YES-instance, there are at least two solutions:
(a) Deleting the last good and exactly o other goods. (b) Deleting the
last but one good and exactly l other goods. The solution (a) induces
an optimum solution for S.

Now, for contradiction, we assume that such an approximation al-
gorithm exists for an approximation ratio k′. For any constant k′, we
could create an instance of AWNT-k where l+1

o+1
≤ k′ is satisfied.

Since the optimum solution is to delete exactly o + 1 goods, the al-
gorithm can find an approximation solution which deletes l+1 goods
in polynomial time, since l+1 ≤ (o+1)k′. This contradicts the fact
that 1

k
Partition is NP-Complete unless P = NP .

Since AWNT is not approximable for both k and d, we define a
similar problem called AWNT-r and prove that it admits an FPTAS.

Definition 4 (AWNT-r). Given an instance W of m goods, the ob-
jective is to identify if there exists a subset W ′ ⊆ W of at most

k ≤ m goods that can be removed, ensuring no transfers of goods
occur when executing the AW method on subset W ′ and minimizing
u1
u2

(with u1 > u2), where u1 is the value of the bundle assigned to
agent 1 and u2 is the value of the bundle assigned to agent 2.

First, we design a dynamic programming algorithm for AWNT
and AWNT-r. We have a table T [i, k, v1, v2] where the first entry
refers to the ith good, the second entry refers to the k goods to be
removed, and the third and fourth entries refer to the values agent 1
and agent 2 get respectively. Both algorithms have a time complex-
ity of O(n2(B + wmax)

2) (Here, wmax is the maximum wij in the
matrix A except the number B). Here, A1 is the set of goods which
are originally assigned to agent 1 and A2 is the set of goods which
are originally assigned to agent 2. Here is the base of the algorithm:

• T [a, b, c, d] = 0 if any of a, b, c, d is negative or a < b,
• T [0, 0, 0, 0] = [∅, ∅],
• T [0, b, c, d] = 0 for all b, c, d ≥ 0 if b+ c+ d > 0.

The induction part is then:

T [i, k, v1, v2] =

[S1, S2], if T [i− 1, k − 1, v1, v2] = [S1, S2],
[S1 ∪ {ei}, S2], if T [i− 1, k, v1 − wi1, v2] = [S1, S2]

and ei ∈ A1,
[S1, S2 ∪ {ei}], if T [i− 1, k, v1, v2 − wi2] = [S1, S2]

and ei ∈ A2,
0, otherwise.

In this table, if T [a, b, c, d] = 0, it means that this combination is
infeasible, and if T [a, b, c, d] = [S1, S2], it means that this combi-
nation is feasible by choosing S1 and S2 as the remaining goods for
agent 1 and agent 2 respectively. This algorithm is a preparation for
an FPTAS; next, we define the problem AWNT-r*.

Definition 5 (AWNT-r*). Given an instance W of m goods and two
indices j1 and j2, the objective is to identify if there exists a subset
W ′ ⊆ W of at most k ≤ m goods that can be removed, ensuring
no transfers of goods occur when executing the AW method on subset
W ′ and minimizing u1

u2
(with u1 > u2), where u1 is the value of the

bundle assigned to agent 1 and u2 is the value of the bundle assigned
to agent 2, and no good assigned to a1 can have a greater value than
wj11 and no good assigned to a2 can have a greater value than wj22.

Remark. For each instance I ′ of AWNT-r, we could create an in-
stance I for it AWNT-r*. In the first step, W remains unchanged.
There must be an optimum solution for I to minimize the ratio
r = u1

u2
with solution S = S1 ∪ S2, where S1(S2) is the set of

assigned goods for agent 1 (2) in S. If such a solution must imply
u2 > u1, we just need to swap the name of agent 1 and agent 2;
therefore, u1 ≥ u2 is guaranteed. In addition, there must be a good
with index j1 for S1 such that wj11 = max{wi1 ∈ S1} and a good
with index j2 for S2 such that wj22 = max{wi2 ∈ S2}.

For I = ({w11, w21, · · · , wn1}, {w12, w22, · · · , wn2}, j1, j2),
we rescale it and get a new instance Î in the following way:

(1) For each i ∈ {1, 2, · · · , n}: if wi1 ≤ wj11, then ŵi1 ←
⌈ wi1·n
ϵ·wj1,1

⌉; otherwise, then ŵi1 ←∞;

(2) For each i ∈ {1, 2, · · · , n}: if wi2 ≤ wj22, then ŵi2 ←
⌊ wi2·n
ϵ·wj2,2

⌋; otherwise, then ŵi1 ← −∞.

(3) And we get Î = ({ŵ11, · · · , ŵn1}, {ŵ12, · · · , ŵn2}, j1, j2).

• We consider an optimum solution S for I . To this end, let r∗ =
u1
u2

be the minimum ratio, where u1 ≥ u2. Moreover, let S1 ⊆
S, S2 ⊆ S, S1 ∩ S2 = ∅ s.t. u1 =

∑
i∈S1

wi1, u2 =
∑

i∈S2

wi2,

wmax,1 = max{wi1 ∈ S1} = wj11 and wmax,2 = max{wi2 ∈
S2} = wj22.

• We now fix some value ū in order to assume that the value of the
bundle assigned to agent 1 is at least ū and the value of the bundle
that is assigned to agent 2 is at most ū. We call this ū-consistent.
We consider the best ū-consistent solution Ŝ for Î which can be
found in the DP. Formally: Let r̂ = û1

û2
be the minimum ratio,

where û1 ≥ ū ≥ û2, where ū = u1+u2
2

; and let Ŝ1 ⊆ Ŝ, Ŝ2 ⊆ Ŝ,
Ŝ1 ∩ Ŝ2 = ∅ s.t. û1 =

∑
i∈Ŝ1

ŵi1, û2 =
∑

i∈Ŝ2

ŵi2.

Theorem 5. The optimal value r̂ found in the DP-table restricted to
ū-consistent entries is at most (1 + ϵ) · r∗ when ū = u1+u2

2
.

Proof. First, we prove that û1 ≤ u1(1 + ϵ′) and û2 ≥ u2(1− ϵ′):

(a) û1 ≤ u1(1 + ϵ′):
For instance Î , we have Ŝ1 = argmin

Ŝ′
1

{
∑

i∈Ŝ′
1

ŵi1 ≥ ū}

=⇒ û1 ≤
∑

i∈Ŝ1

ŵi1 ≤
∑

i∈S1

ŵi1 ≤
∑

i∈S1

⌈ wi1·n
ϵ′·wmax,1

⌉

≤
∑

i∈S1

wi1·n
ϵ′·wmax,1

+ n ≤ n
ϵ′·wmax,1

∑
i∈S1

wi1 + n

=⇒
∑

i∈Ŝ1

wi1 ≤ ϵ′·wmax,1

n

∑
i∈Ŝ1

ŵi1

≤ ϵ′·wmax,1

n
(n
ϵ′·wmax,1

∑
i∈S1

wi1 + n) =
∑

i∈S1

wi1 + ϵ′ · wmax,1

≤
∑

i∈S1

wi1(1 + ϵ′)

(b) û2 ≥ u2(1− ϵ′):
For instance Î , we have Ŝ2 = argmax

Ŝ′
2

{
∑

i∈Ŝ′
2

ŵi2 ≤ ū}

=⇒
∑

i∈Ŝ2

ŵi2 ≥
∑

i∈S2

ŵi2 ≥
∑

i∈S2

⌊ wi2·n
ϵ′·wmax,2

⌋

≥
∑

i∈S2

wi2·n
ϵ′·wmax,2

− n ≥ n
ϵ′·wmax,2

∑
i∈S2

wi2 − n

=⇒
∑

i∈Ŝ2

wi2 ≥ ϵ′·wmax,2

n

∑
i∈Ŝ2

ŵi2

≥ ϵ′·wmax,2

n
(n
ϵ′·wmax,2

∑
i∈S2

wi2 − n) =
∑

i∈S2

wi2 − ϵ′ · wmax,2

≥
∑

i∈S2

wi2(1− ϵ′)

In the second step, we set ϵ = 2ϵ′

1−ϵ′ , so that ϵ′ = ϵ
ϵ+2

. Thus,

r̂ ≤ (
1 + ϵ′

1− ϵ′
)r∗ = (1 + ϵ)r∗ .

This finishes the proof.

Theorem 6. There is an FPTAS for AWNT-r.

Proof. For each instance of I of AWNT-r, we try out all possible
pairs of j1 and j2. Here, we create n2 instances of AWNT-r* for I .
For each instance of I∗ AWNT-r*, we can rescale it into Î∗. Then
for each cell in the table of the DP algorithms, it is represented as
[i, k, û1, û2]. We know û1 =

∑
i∈Ŝ1

ŵi1 =
∑

i∈Ŝ1

⌈ wi1·n
ϵ·wmax,1

⌉ ≤ n2

ϵ
+ n

and û2 =
∑

i∈Ŝ2

ŵi2 ≤
∑

i∈Ŝ2

⌊ wi2·n
ϵ·wmax,2

⌋ ≤ n2

ϵ
. Here, all the numbers

are polynomially bounded by the input length and 1
ϵ

. Combining with
Theorem 5, we obtain an FPTAS for AWNT-r.

4 Avoiding-Split Problem (AWNS)
We introduce the AWNS problem, which aims to identify whether
deleting at most k goods, resulting in a subset of m−k goods, exists
to prevent the splitting of goods between the agents when performing
the AW procedure. In essence, this problem poses a decision-based
inquiry wherein, given an instance, the task is to ascertain if, when
applying the AW algorithm to it, the execution halts before reaching
the third step. (That is, only Step 1 and Step 2 are to be executed.)

Definition 6. Given an instance W of m goods and threshold d, the
objective is to identify if there exists a subset W ′ ⊆ W of at most
k ≤ m goods that can be removed, ensuring no splits of goods occur
when executing the AW method on subset W ′ with threshold d.

The following observation connects AWNT and AWNS:

Observation 2. A yes-instance of AWNT is also a yes-instance to
AWNS, as no split occurs when there are no transfers. However, a
yes-instance to AWNS does not have to be a yes-instance to AWNT. A
no-instance of AWNS is also a no-instance to AWNT, since splitting a
good necessitates a transfer. However, a no-instance of AWNT does
not have to be a no-instance of AWNS.

Definition 7. (AWNS alternative definition) we introduce the AWNS
matrix variation problem.

• A matrix A ∈ N2×m
0 where each cell A[i][j] ∈ N0 is the utility

ui(wj) that agent i ∈ {1, 2} assigns to good wj ∈ W , and also∑m
j=1 A[1][j] =

∑m
j=1 A[2][j] = z. We also denote ai∈[2] as a

group containing the i-th row of the matrix.
• An integer k ≤ m – the number of columns to be deleted.
• A threshold d – the difference between the agents’ utilities.

We formulate the problem as determining if k columns exist to be
deleted such that after executing AW, we obtain two sets of numbers,
b1 and b2, representing the utilities for all allocated goods j belong-
ing to each agent’s bundle. This deletion ensures that:

|
∑
t∈b1

t−
∑
t∈b2

t| ≤ d (3)

and
b1 ∪ b2 = a1 ∪ a2 .

Observation 3. The AWNS matrix variation problem is equivalent
to the original AWNS problem, as the solution for the AWNS matrix
variation is the same as the solution for the original AWNS problem.

4.1 Computational Intractability (of AWNS)

We are interested in the computational complexity of AWNS.

Theorem 7. AWNS is weak NP-hard.

Proof. Given an instance of the Subset Sum problem with m num-
bers and a target number B (where, without loss of generality, we
assume that B is a multiple to m2), we create an instance of AWNS
in its matrix variation, as follows:

• Initialize the matrix A as in the definition of AWNS.
• Append an additional row to the matrix A to represent the target

sum B: set the last element of this row to B; let A =

[
X 0
0 B

]
.

• Scale the entire matrix by another factor of m.

• To ensure equal row sums: compute z, the sum of elements in the
first row of A (excluding the last element); compute S, the sum of
elements in the second row of A; adjust A[2][m], the last element
of the second row, to match the sum of the first row: A[2][m] =
A[2][m] + (z − S).

• To ensure that A[2][j] > A[1][j] for all j ∈ {1, · · · ,m} and
A[2][m] < A[1][j]: for each element A[2][j] in the second row
(except the last): while A[2][j] is greater than A[1][j]: A[2][j] by
a multiple of m until it is less than A[1][j]; if A[2][j] −m < 0,
continue to the next value without decreasing.

• Subtract m− 1 tokens from A[2][1].
• Introduce an additional token to each cell A[2][j], where j ∈
{2, · · · ,m}.

This finishes the description of the reduction. For correctness, in-
tuitively, the matrix is crafted to ensure that the summation of any
subset of numbers in the second row, taken modulo m, will never
result in zero. This critical adjustment guarantees that any potential
solution, if it exists for the subset sum problem (represented by the
first row of the matrix), simultaneously fulfills the criteria for a no-
split solution. Specifically, the sum of any subset of numbers from
the second row of the matrix, excluding the last value in the m + 1
position, modulo m, will always yield a non-zero result as long as
|subset(a2)| < m. More formally, we show that an instance is a yes
instance for AWNT iff it is a yes instance for the constructed AWNS
instance. To this end, note that if the Subset Sum problem has a so-
lution, i.e., there exists a subset of k numbers (where k < m) whose
sum is equal to the target number B′, we can select the columns for
agent 1 that correspond to these numbers. The resulting matrix A′

will have m− k+1 columns. When the Adjusted Winner method is
applied to A′, no good will be split between the two agents. Thus, the
No Split problem has a solution. If the Subset Sum problem has no
solution, the construction determines that the corresponding AWNS
problem also has no solution. This is because for each subset of cells
in the second row, the modulus of the total sum of that subset will
always be different from zero, resulting in a split.

Conversely, if the AW-No Split problem has a solution, it implies
that there exists a selection of m − k + 1 goods from agent 1 such
that, after removal, the remaining goods can be allocated using the
Adjusted Winner method without any good being split. This selec-
tion corresponds to a subset of numbers whose sum is equal to the
target number B′ in the Subset Sum problem. Therefore, the original
Subset Sum problem also has a solution.

4.2 Parameterized Complexity (of AWNS)

We go on to consider the parameterized complexity of AWNS.

Corollary 1. The parameterized complexity of AWNS equals that of
AWNT – for the results we have for AWNT; this follows by a care-
ful look into the corresponding proofs, which shows that a “yes”
instance is achieved without any transfers.

4.3 Approximation Algorithms (of AWNS)

For AWNS we have analogous inapproximability results as for
AWNT. Indeed, the proof of the next theorem is identical to the one
for Theorem 2.

Theorem 8. Unless P = NP, for any approximation ratio, there is
no polynomial-time algorithm that provides a multiplicative approx-
imation guarantee to minimize the threshold d (AWNS).

Analogously, we present the AWNS-k optimization variant:

Definition 8 (AWNS-k). Let the minimal k Adjusted Winner No
Split (AWNS-k) be an optimization version of the AWNS problem
that minimizes k, the number of goods to delete while maintaining
|U1(W

′
1)− U1(W

′
2)| ≤ d.

Theorem 9. Unless P = NP, for any approximation ratio, there is
no polynomial-time algorithm with a multiplicative approximation
guarantee to minimize the number of goods k to delete (AWNS-k).

The detailed proof will be presented in the full version. One may
wonder now whether there also is a FPTAS for AWNS-r. We leave
this open and remark that this seems technically very challenging.
The main problem is that the scaling approach cannot be easily
adapted, since, after scaling, the ratio of the items values changes
and the ordering in which items are transferred can be different, with
a potentially huge effect on possible solutions.

5 Computer-Based Simulations

We complement our theoretical analysis of AWNT and AWNS with
computer-based simulations. The main aim of these is to better in-
vestigate the effectiveness of removing goods and the dependence of
such effectiveness on structural properties of different instances. Our
experiments were conducted using several datasets – one based on
real-world data and the others artificially-generated.

• Real-world data: The real-world data set corresponds to instances
from the Spliddit, an online fair division platform [12]. We have
performed the following processing over the data: we filtered the
dataset to include only instances with two agents (as these are the
relevant instances for AW), and to instances with between 4 to 10
goods (this was done for convenience, and contains the majority of
the available Spliddit instances), resulting in 513 instances. Within
this dataset, the total number of tokens (z), representing the sum
of each row in the matrix, is standardized to 1000.

• Artificial data: The artificially-generated instances contain two
agents and 4 to 10 goods. Following the literature on sampling
distributions for fair division [5], we have used 3 distributions:
Dirichlet resampling, Attributes model, and a Euclidean model.
We have generated 252 instances for each of the three distribu-
tions, totaling 756 synthetic instances.

We describe the specific distributions and parameters used for sim-
ulations. To standardize the artificial dataset, we adjusted it to ensure
that the sum of each row equals 1000 by adding or subtracting to-
kens to random cells while maintaining each value in a cell to be
greater than or equal to 0. For the resampling, which serves as the
base for the Dirichlet distribution, we generate a set of approved
goods for each agent, over which the agent splits the total utility of
1 equally. The parameters include p ∈ {0.6, 0.4, 0.2} denoting the
probability of selecting a good for the central approval set V ∗, and
ϕ ∈ {0.2, 0.8} representing the probability of resampling a good’s
membership in the agent’s approval set V . The procedure involves
choosing the central approval set V ∗ by uniformly drawing ⌊p ·m⌋
goods and generating each agent’s approval set V by copying V ∗

and altering it according to the given probabilities. For the Dirichlet-
Resampling model, we sample each agent’s approval set V using the
resampling model and set each agent’s utility for goods outside of V
to zero. The parameter α ∈ {1, 2, 3} denotes the shape parameter
for the Dirichlet distribution. The procedure involves sampling each

Table 3. Simulation results for AWNT and AWNS for the Spliddit. In each of the plots: the x-axis is the total number m of goods; the y-axis is the number k
of goods that are allowed to be removed; and the value in each cell is the average (over the simulation repetitions) of the difference in utility of the two agents.

AWNT AWNS

Spliddit

agent’s utility for the goods in V from a symmetric Dirichlet distribu-
tion with parameter α, scaling it by 100, and rounding it up. For the
Attributes model, we sample vectors representing goods and agents’
utility over attributes. The parameter d ∈ {2, 5} indicates the num-
ber of attributes. The procedure involves sampling vectors for goods
and agents uniformly at random from [0, 1]d, where the agent’s util-
ity for a good is proportional to the dot product of the agent’s at-
tribute weights vector and the good’s desirability vector. Lastly, for
the Euclidean model, we sample vectors for goods and agents’ utility
over attributes and calculate utility based on Euclidean distance. The
parameter d ∈ {2, 5} denotes the dimensionality for sampling vec-
tors. The procedure involves sampling vectors for agents and goods
uniformly from [0, 1]d and calculating the agent’s utility for a good
based on the Euclidean distance between their attribute vectors.

Results. We have performed two experiments – one in which
we wanted to see the average effectiveness of removing goods that
will be shown in the full version, and one in which we wanted to
see the structural properties that affect the effectiveness of removing
goods as that will also be shown in the full version of this paper.

Experiment 1. In the first experiment, whose full results are in
the full version, we tested how effective deleting goods is in the sense
of reducing the utility difference between the two agents. To this end,
we have considered all instances; for each, we considered k spanning
from 0 to m− 2 (recall that m is the total number of goods and k is
the number of goods to delete), and calculated the optimal difference
d between the utility of the agents when up to k goods are deleted;
both for AWNT and for AWNS. In Table 3 we present the results
only for the Spliddit data-set for AWNT and AWNS, in which k is
the x-axis, m is the y-axis, and the value in each cell is the optimal
utility difference d for a combination of m total goods and up to k
goods to delete.

Experiment 2. In the second experiment, our objective was to
elucidate the correlation between the structure of an instance and its
response to good deletion, specifically examining its receptiveness
to removing goods. To accomplish this, building upon the findings
of the previous experiment which indicated that the maximum gain
from deleting goods, in terms of the change in d, was achieved when
transitioning from no goods to delete to one good to delete, we con-
ducted a comprehensive analysis across all datasets. We aimed to
model the ℓ1 distance between the utilities of the two agents as a
function of the gain, denoted as d0 − d1, where d0 represents the

difference when no goods are removed, and d1 is the minimal differ-
ence observed when one good is removed. While the artificial data
showed a very low correlation, the Spliddit data, resulted in a high
correlation of 0.677 for AWNS and 0.569 for AWNT. It will also be
illustrated in the the full version of this paper in the future.

Discussion. We discuss our conclusions from the simulations:
(1) As expected, for all artificial and real instances, deleting the first
column had the most significant impact. Interestingly, after delet-
ing one or two more columns, this impact decreases drastically; (2)
The maximum gain of an instance from deleting columns can be ex-
pressed as a function of the distribution difference between the rows.
This implies that, the more different the instances are, the more gain
an instance will receive from deleting a column; (3) It seems that the
more goods needed to be deleted in order to reach half of the opti-
mal d, the more likely the difference between the two rows and the
distribution, will be low.

6 Outlook
We have investigated an approach to avoiding conflicts in AW – in
the sense of avoiding transferring or splitting goods within the pro-
cess of Adjusted Winner – by removing a few goods. Our theoreti-
cal results suggest that, while the corresponding combinatorial prob-
lems are generally intractable, there are efficient parameterized algo-
rithms, pseudopolynomial algorithms, and approximation algorithms
for the problems. Our computer-based simulations show the effec-
tiveness of the approach in reducing the utility difference between
the agents and show how the more misaligned the agents are the more
effective is the approach. Some avenues for future research include:
(1) pinpointing whether an FPTAS for AWNS-r exists; (2) identify-
ing structural properties of instances that affect their behavior w.r.t.
removing goods (theoretically, and via simulations that follow the
map of elections framework for fair division [5]); (3) studying other
actions besides removing goods (e.g., modifying goods, removing
utility tokens, or adding goods); and (4) considering other optimiza-
tion goals (e.g., minimizing the number of discarded tokens denoted
by z).

References
[1] A. Abboud, K. Lewi, and R. Williams. On the parameterized complex-

ity of k-sum. CoRR, abs/1311.3054, 2013.
[2] G. Amanatidis, G. Birmpas, A. Filos-Ratsikas, and A. A. Voudouris.

Fair division of indivisible goods: A survey. In Proceedings of the 31st
International Joint Conference on Artificial Intelligence (IJCAI ’22),
pages 5385–5393. ijcai.org, 2022.

[3] H. Aziz, S. Brânzei, A. Filos-Ratsikas, and S. K. S. Frederiksen. The ad-
justed winner procedure: Characterizations and equilibria. In Proceed-
ings of the 24th International Joint Conference on Artificial Intelligence
(IJCAI ’15), pages 454–460. AAAI Press, 2015.

[4] J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. How hard is it to
control an election? Mathematical and Computer Modelling, 16(8-9):
27–40, 1992.

[5] P. Böhm, R. Bredereck, P. Gölz, A. Kaczmarczyk, and S. Szufa. Putting
fair division on the map, 2023.

[6] S. Bouveret and M. Lemaître. Characterizing conflicts in fair division
of indivisible goods using a scale of criteria. Autonomous Agents and
Multi-Agent Systems, 30(2):259–290, 2016.

[7] Brams. Fair division: A new approach to the spratly islands controversy.
International Negotiation, 2(2):303–329, 1997.

[8] S. J. Brams and A. D. Taylor. Fair Division: From cake-cutting to dis-
pute resolution. Cambridge University Press, 1996.

[9] N. Dupuis-Roy and F. Gosselin. An empirical evaluation of fair-division
algorithms. In Proceedings of the annual meeting of the cognitive sci-
ence society, volume 31, 2009.

[10] P. Faliszewski and J. Rothe. Control and bribery in voting., 2016.
[11] M. R. Garey and D. S. Johnson. Computers and intractability, volume

174. freeman San Francisco, 1979.
[12] J. Goldman and A. D. Procaccia. Spliddit: Unleashing fair division

algorithms. ACM SIGecom Exchanges, 13(2):41–46, 2015.
[13] D. M. Kilgour and R. Vetschera. Two-person fair division with additive

valuations. Group Decision and Negotiation, pages 1–30, 2024.
[14] K. Koiliaris and C. Xu. Subset sum made simple. arXiv preprint

arXiv:1807.08248, 2018.
[15] T. G. Massoud. Fair division, adjusted winner procedure (aw), and the

Israeli-Palestinian conflict. Journal of Conflict Resolution, 44(3):333–
358, 2000.

[16] E. Pacuit. Towards a logical analysis of adjusted winner. Proof, Com-
putation and Agency: Logic at the Crossroads, pages 229–239, 2011.

[17] S. Salame, E. Pacuit, and R. Parikh. Some results on adjusted winner.
Synthese, 2005.

	Introduction
	Preliminaries
	A Formal Model of Fair Division

	Avoiding-Transfers Problem (AWNT)
	Computational Intractability (of AWNT)
	Parameterized Complexity (of AWNT)
	Approximation Algorithms (of AWNT)

	Avoiding-Split Problem (AWNS)
	Computational Intractability (of AWNS)
	Parameterized Complexity (of AWNS)
	Approximation Algorithms (of AWNS)

	Computer-Based Simulations
	Outlook

