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Abstract. We consider strategy proof mechanisms for facility lo-
cation which maximize equitability between agents. As is common
in the literature, we measure equitability with the Gini index. We
argue why the Gini index of agent utilities is a better measure of eq-
uitability than the Gini index of distances agents must travel to the
nearest facility. We first prove a simple but fundamental impossibil-
ity result that no strategy proof mechanism can bound the approx-
imation ratio of the optimal Gini index of utilities (or of distances)
for one or more facilities. We propose instead computing approxima-
tion ratios of the complemented Gini index of utilities, and consider
how well both deterministic and randomized mechanisms approx-
imate this. For deterministic mechanisms and a single facility, we
prove that the MEDIAN mechanism 2-approximates this objective,
but that the MIDORNEAREST mechanism does even better, provid-
ing a 6/5-approximation. This leaves a small gap to a lower bound
on the approximation ratio for any deterministic and strategy proof
mechanism of 8/7. For randomized mechanisms and a single facility,
we prove that the LRM mechanism (which is optimal with respect to
approximating the maximum distance) is not optimal with respect to
approximating the complemented Gini index of utilities. We also ex-
tend these approximability results to multiple facilities. For instance,
we propose a new mechanism for locating two facilities with an ap-
proximation ratio of the optimal complemented Gini index of utili-
ties that is better than the ENDPOINT mechanism, the only mecha-
nism with a bounded approximation ratio of the minimum utility or
maximum distance. Experiments demonstrate that these mechanisms
perform well not just in the worst case but on average, often returning
solutions within a few percent of optimal.

1 Introduction

Mechanism design is the problem of designing rules for a game to
achieve a specific outcome, even though each participant may be self-
interested. The aim is to design rules so that the participants are in-
centivized to behave as the designer intends. This typically includes
achieving properties such as truthfulness, individual rationality, bud-
get balance, and maximizing social welfare. Here we consider an-
other desirable property that designers might look to achieve: equi-
tability. How does a mechanism designer ensure that all participants
are equally happy with the outcome? Surprisingly, equitable mech-
anism has received somewhat limited attention so far in the social
choice literature.

Central to this question of equitable mechanism design is defin-
ing what it means for an outcome to be equitable. Consider the sim-
ple decision making problem of locating a facility along a line. This
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models a number of real world problems such as picking the room
temperature for a classroom, or the deadline for a project. Agents
have single peaked preferences, and their preference increases as the
facility is moved nearer to their location. Our goal is to design mech-
anisms which locate the facility so that the distances which the dif-
ferent agents must travel are as similar as possible.

In general, of course, the distances agents travel often cannot be
the same. Consider locating a facility on the interval [0, 1], with three
agents: one at 0, another at 1/2 and the final at 1. The agent at 1/2
inevitably has to be nearer the facility than at least one of the other
two agents. There is no place on [0, 1] that the facility can be located
that ensures all three agents are the same distance from the facility.
Where then do we locate the facility to ensure the most equitable
outcome? In this case, locating the facility at 1/2 might seem best.
The agents at the two extremes both have to travel an equal distance,
while the third agent is even better off. Any other solution is more
inequitable as one of the agents at the endpoints must travels a greater
distance, while the agent at the other endpoint travels less.

Our goal then is to design equitable mechanisms for facility lo-
cation in which agents are incentivized to report sincerely. While
our focus is on the facility location problem, there are some gen-
eral conclusions that can be drawn from this study. First, design-
ing mechanisms for equitability is somewhat different to designing
mechanisms for other objectives such as social welfare. For instance,
equitability considers all agents, while egalitarian welfare considers
just the worst off agent. We will show that mechanisms with approx-
imate well the egalitarian welfare may not return very equitable out-
comes. Second, designing mechanisms for equitability is possible if
we sacrifice a little optimality. Indeed, we identify mechanisms that
are typically within a few percent of optimal, and come with worst
case bounds not much greater than this. And third, equitability is not
incompatible with the self-interest of participants. In particular, we
identify strategy proof mechanisms that return outcomes with close
to optimal equitability. We conjecture that equitable mechanism de-
sign may therefore offer promise in other domains such as fair divi-
sion and ad auctions.

2 Facility location
The facility location problem is a classic problem in social choice
(and mulitagent decision making) in which we need to decide where
to locate a facility to serve a set of agents. We consider n agents lo-
cated on the real line at x1 to xn . Without loss of generality, we
suppose x1 ≤ . . . ≤ xn. A deterministic mechanism f locates the
facility at a location y. Formally, f(x1, . . . , xn) = y. We let di be
the distance of agent i to the facility: di = |xi − y|. A randomized
mechanism returns a probability distribution of facility locations. A
mechanism is strategy proof iff no agent can misreport their position



and have the (expected) distance to the facility reduce. We limit our
attention to unanimous mechanisms that when x1 = . . . = xn, lo-
cate the facility at x1. As in a number of previous studies, we assume
that agents and facilities are on the finite interval [0, 1], and the util-
ity of agent i is 1 − di. The interval could be [a, b] supposing we
normalise by b− a.

Supposing agents and facilities lie on a finite interval is interesting
for both practical and theoretical reasons. In particular, agents and
facilities are often limited to a finite interval and cannot be located
outside those limits. For example, when setting a thermostat, we have
a temperature range limited by the boiler. As a second example, when
locating a water treatment plant on a river, the plant must be on the
river itself. As a third example, when locating a shopping centre,
the centre might have to be on the fixed (and finite) road network.
There are thus many situations where agents are limited to a finite
interval. Restricting agents to a finite interval also limits the extent to
which agents can misreport their location to influence the outcome.
A finite interval has been used in a number of recent works (e.g.
[15, 6, 8, 2, 3]).

We consider various strategy proof mechanisms for facility loca-
tion. The LEFTMOST mechanism locates the facility at x1, the left-
most agent. The MEDIAN mechanism locates the facility at x⌊n/2⌋,
the median agent. The MIDORNEAREST mechanism locates the fa-
cility at xn when xn < 1/2, at 1/2 when x1 ≤ 1/2 ≤ xn, and at
x1 when x1 > 1/2. The ENDPOINT mechanism locates one facility
at x1 and another at xn. Agents are served by their nearest facility.
These mechanisms are all deterministic. We also consider random-
ized mechanisms which return a lottery over solutions. For example,
the LRM mechanism (Left Right or Midpoint) locates the facility at
x1 with probability 1/4, at (x1 + xn)/2 with probability 1/2, and at xn

with the remaining probability 1/4. The mechanism is strategy proof.
Agents cannot reduce their expected distance to the facility by mis-
reporting their location.

We consider how well mechanisms approximate some objective
O like the (soon to be defined) Gini index of distances. For a max-
imization objective, the approximation ratio is the maximum ratio
of Oopt/Oapprox where Oopt is the optimal objective value and
Oapprox is the approximately optimal objective value returned by the
mechanism. For a minimization objective, the approximation ratio is
the maximum ratio of Oapprox/Oopt. For instance, a mechanism 2-
approximates an objective iff the approximate solution returned by
the mechanism is always within a factor of 2 of the optimal.

While our results are focused on the 1-d setting, they are interest-
ing more broadly. The 1-d facility location problem models several
real world problems such as locating ferry stops along a river or dis-
tribution centres along a highway. There are also non-geographical
settings that are 1-d (e.g. setting a thermostat). In addition, we can
solve more complex problems in higher dimensions by decomposing
them into 1-d problems. Finally, the 1-d problem is the starting point
to consider more complex metrics such as trees and networks.

3 Minimizing the Gini index

The Gini index is one of the most widely used measures of equi-
tability in economics. It can be justified axiomatically in a number
of ways. For instance, it is the unique index that satisfies scale in-
variance, symmetry, proportionality and convexity in similar rank-
ings. Unsurprisingly it has been used in facility location problems.
For example, Mulligan [17] argues that simple equitability measures
like maximum distance ignore the distribution of distances and rec-
ommends instead measures like the Gini index. The Gini index of

distances is defined by:

Gd =

∑
i≤n

∑
j≤n |di − dj |

2n
∑

i≤n di

This lies in [0, 1], takes the value 0 for an equitable solution when
di = dj for all i and j, and increases in value as distances become
more unequal. If all agents are at the same location, then any facil-
ity location is an equitable solution since all agents travel the same
distance. Therefore equitability alone is not sufficient to guarantee
solutions are desirable. We might also demand additional properties
like unanimity.

Unfortunately, strategy proof mechanisms cannot approximate
well the optimal Gini index of distances. We begin with a simple
but important impossibility result.

Theorem 1. No strategy proof mechanism for locating one or more
facilities on the real line or on the interval [0, 1] has a bounded ap-
proximation ratio for the Gini index of distances with any number of
agents.

Proof. Suppose there exists a strategy proof mechanism with a
bounded approximation ratio for locating a facility. Consider one
agent is at 0 and the second at 1/2. The Gini index takes the value
zero iff the facility is located at the mean location, 1/4. To satisfy
the approximation ratio, the facility must be located at this position.
Suppose the second agent reports location 1. To satisfy the approx-
imation ratio, the facility must now be located at the new mean lo-
cation, 1/2. Hence, if agents are at 0 and 1/2 then the agent at 1/2
has an incentive to mis-report their location as 1. This contradicts
our assumption that there exists a strategy proof mechanism with a
bounded approximation ratio.

Suppose there exists a strategy proof mechanism with a bounded
approximation ratio for locating n facilities (n ≥ 2). Consider agents
at 0, 1/16n and 3/2n, 5/2n, . . . , 1 − 1/2n. The Gini index takes its
zero value when facilities are located at 1/32n, and 3/2n ± 1/32n,
5/2n±1/32n, . . . , 1−1/2n±1/32n. To satisfy the approximation ratio,
the mechanism must locate the n facilities at these n locations. Sup-
pose the second agent reports location 1/8n. To satisfy the approxima-
tion ratio, the leftmost facility must now be located at 1/16n. Hence,
if agents are at 0, 1/16n and 3/2n, 5/2n, . . . , 1− 1/2n then the agent at
1/16n has an incentive to mis-report their location as 1/8n. This con-
tradicts our assumption that there exists a strategy proof mechanism
with a bounded approximation ratio. Note that randomization does
not help escape this impossibility. The proof works whether mecha-
nisms are deterministic or randomized.

4 Switching to utilities
But does minimizing the Gini index of distances even guarantee an
equitable outcome? Minimizing the Gini index of incomes rightly
favours incomes being large over incomes being small. But minimiz-
ing the Gini index of distances perversely favours distances being
large over distances being small. As an extreme example, in Figure
1 we have one agent at 0 and n − 1 agents at 1 for n > 2. If we
minimize the Gini index of distances then locating the facility at 0 is
preferred, giving the minimum possible Gini index of 1/n, compared
to locating the facility at 1, giving the maximum possible Gini index
of (n − 1)/n. Thus, on this problem, minimizing the Gini index of dis-
tances prefers the solution in which most agents travel the maximum
possible distance and one agent has no distance to travel, over the so-
lution where one agent has to travel the maximum possible distance
but most agents have not to travel at all.



A better and more equitable solution in facility location is to con-
sider utilities rather than distances and an equitability measure like
the Gini index of utilities.

Gu =

∑
i≤n

∑
j≤n |ui − uj |

2n
∑

i≤n ui

Minimizing the Gini index of utilities prefers most agents having
the maximum possible utility over most agents having the minimum
possible utility. In the example in Figure 1, minimizing the Gini index
of utilities would favour locating the facility at 1 along with most
agents, rather than at the single agent located at 0.

Figure 1: Example of facility location problem with n agents illustrat-
ing why minimizing the Gini index of utilities (Gu) rather than the
Gini index of distances (Gu) gives an equitable outcome in which
agents travel the least.

Unfortunately, switching to the Gini index of utilities rather than
the Gini index of distances does not also fix the problem that approx-
imation ratios can be unbounded.

Theorem 2. No strategy proof mechanism for locating one or more
facilities on [0, 1] has a bounded approximation ratio for the Gini
index of utilities with any number of agents.

Proof. We can simply repeat the previous proof.

The problem with the approximation ratio of the Gini index,
whether it be the Gini index of utilities or of distances, is that the
approximation ratio of the Gini index concentrates attention on equi-
table problems where the index is zero (and all distances/utilities are
equal). A natural way around this problem is to consider the comple-
mented Gini index (that is, 1 − G). This is again in [0, 1] but now
is 1 when utilities (or distances) are equal. Our goal now is to max-
imize the complemented Gini index rather than minimize the origi-
nal Gini index. Considering the approximation ratio of the comple-
mented Gini index switches attention away from equitable problems
in which utilities (or distances) are balanced to inequitable problems
in which utilities (or distances) are necessarily imbalanced (such as
the example in the introduction with agents at 0, 1/2 and 1). You
might be concerned that by shifting to the complement of the Gini
index, we are just replacing one problem (approximating equitable
problems with Gini indices close to zero) with another (approximat-
ing inequitable problems with Gini indices close to 1). This is not the

case. While Gini indices can indeed be close to zero (and hard to ap-
proximate within a constant factor), it is not hard to show that, with a
facility location problem, the optimal Gini index of utilities is never
that close to 1 (and, as we shall show, can be approximated well).

5 Deterministic mechanisms
Now that we have identified an appropriate objective (namely, the
complemented Gini index of utilities), we prove that there exist strat-
egy proof mechanisms which approximate this objective well. We
start with one of the simplest possible mechanisms. The LEFTMOST

mechanism is strategy proof and 2-approximates the maximum dis-
tance [18]. This is optimal as no deterministic and strategy proof
mechanism can do better [18]. The LEFTMOST mechanism is worse
at approximating the complemented Gini index. By Theorems 1 and
2, there is also no bound on how poorly it approximates the Gini
index of distances or utilities as it is strategy proof. While it has a
bounded approximation ratio for the complemented Gini index of
distances, the bound is not very good (and increases with the number
of agents).

Theorem 3. For a facility location problem with n agents, the
LEFTMOST mechanism n-approximates the complemented Gini in-
dex of utilities.

Proof. If all agents are at the same location, then any mechanism
is optimal wrt both the Gini index and the (complemented) Gini in-
dex. Therefore we suppose agents are at two or more locations. The
smallest possible complemented Gini index (which the LEFTMOST

mechanism achieves) is when one agent is at 0 and the remaining
n − 1 agents are at 1. The complemented Gini index in this case is
just 1/n. Note that it is impossible for the Gini index to be larger (and
thus for the complemented Gini index to be smaller). The optimal
complemented Gini index that can be achieved in this case is, on the
other hand, maximal. In particular, if we locate the facility at 1/2, the
complemented Gini index is 1. The LEFTMOST mechanism therefore
n-approximates the optimal complemented Gini index.

The MEDIAN mechanism does significantly better than the
LEFTMOST mechanism. This is unsurprising as the MEDIAN mech-
anism is more balanced than the LEFTMOST mechanism which lo-
cates the facility at an extreme location. When considering the ap-
proximability of egalitarian welfare, we cannot distinguish between
the LEFTMOST and MEDIAN mechanisms. Both 2-approximate the
maximum distance. Here we see that equitability distinguishes them
apart.

Theorem 4. The MEDIAN mechanism 2-approximates the comple-
mented Gini index of utilities.

Proof. We prove first that the MEDIAN mechanism always returns
a facility location that gives a complemented Gini index of util-
ities of 1/2 or greater. As the complemented Gini index is 1 or
smaller, the MEDIAN mechanism therefore cannot be worse than a
2-approximation. Indeed, if we have one agent at 0 and another at 1,
we note that it is at best a 2-approximation.

Suppose agents are at x1 to xn with x1 ≤ . . . ≤ xn. Without loss
of generality, we suppose x1 = 0. There are two cases. In the first
case, n = 2k is even. Note that the median agent is at xk, which is the
location of the facility. WLOG we suppose xk ≤ 1/2 otherwise we
reflect the position of any agent x onto 1− x (and again if necessary
shift all agents to left so leftmost agent is at 0). We first prove that∑

i ui takes a minimum value of k. In fact, the minimum value of



this sum is when x1 = . . . = xk = 0 and xk+1 = . . . = xn = 1.
Suppose there is a smaller value for the sum of utilities for some
other values x′

1 to x′
n. If we map x′

i onto 0 for i ≤ k then each ui

for i ≤ k increases less than each ui for i > k decreases. That is,
the sum of utilities would decrease which is a contradiction. Hence,
x′
1 = . . . = x′

k = 0. Similarly, suppose x′
k+1 < 1. Then mapping xi

onto 1 for i > k would decrease the sum of utilities which is again a
contradiction. Hence, the smallest sum of utilities occurs when x1 =
. . . = xk = 0 and xk+1 = . . . = xn = 1 and this sum is k.

We next prove that
∑

i

∑
j |ui − uj | takes a maximum value of

2k2. Again, the maximum value of this double sum is when x1 =
. . . = xk = 0 and xk+1 = . . . = xn = 1. We consider different
terms in the double sum. If we consider the pair of terms |ui −uj |+
|ui − un−j+1| for i < j ≤ k then as xi and xj are at or to the left
of xk, and at or the right of xk, it follows that the sum of these two
differences equals or is less than 1. A similar argument applies to the
sum of terms |un−i+1 − un−j+1|+ |un−i+1 − uj |. Hence the 4k2

terms have a maximum sum of 2k2. This largest double sum occurs
when again x1 = . . . = xk = 0 and xk+1 = . . . = xn = 1.

The complemented Gini index is 1 −
∑

i

∑
j |ui−uj |

2n
∑

i ui
. The mini-

mum value this takes is lower bounded by the maximum value of∑
i

∑
j |ui − uj | divided by the minimum value of

∑
i ui. That is a

lower bound of 1− 2k2

4k·k or 1/2.
In the second case n = 2k+1 is odd. WLOG we suppose xk+1 ≤

1/2. This is the median agent and therefore location of the facility. By
a similar argument,

∑
i ui takes a minimum value of k + 1, and∑

i

∑
j |ui − uj | takes a maximum value of 2k(k + 1) when x1 =

. . . = xk+1 = 0 and xk+2 = . . . = xn = 1 The complemented
Gini index takes its minimum value of 1− 2k(k+1)

2(2k+1)(k+1)
or 1− k

2k+1

which tends to 1/2 from above as k goes to infinity.

Can we do even better than this? Consider the MIDORNEAREST

mechanism. This is strategy proof and 2-approximates the optimal
maximum distance (and no strategy proof and deterministic mecha-
nism can do better). It also 3/2-approximates the optimal minimum
utility (and no strategy proof and deterministic mechanism can do
better) [1]. We now show that the MIDORNEAREST mechanism pro-
vides a close to optimal equitable solution.

Theorem 5. The MIDORNEAREST mechanism 6/5-approximates
the optimal complemented Gini index of utilities.

Proof. Observe that the MIDORNEAREST mechanism guarantees
that ui ≥ 1/2 for any i. The most inequitable outcome for this mech-
anism then is when ui = 1/2 for i < n and un = 1. This oc-
curs, for example, when xi = 0 for i < n and xn = 1/2, and the
MIDORNEAREST mechanism locates the facility at 1/2. This gives
a Gini index of utilities of (n−1)

n(n+1)
. This is maximized for n = 2

and n = 3 when the Gini index is 1/6. The complement of the Gini
index is thus 5/6 or greater. Coincidently, when xi = 0 for i < n
and xn = 1/2, there is an optimal and perfectly equitable solution
which locates the facility at 1/4, giving a complemented Gini in-
dex of utilities of 1. Hence, the most inequitable outcome for the
MIDORNEAREST mechanism with a Gini index of 1/6 occurs when
there is an optimal and perfectly equitable solution. The approxima-
tion ratio of the MIDORNEAREST mechansm is thus 6/5.

It is easy to see that any strategy proof mechanism must approxi-
mate the optimal complemented Gini index of utilities. For instance,
with two agents, a mechanism that returns the optimal complemented
Gini index would need to track the midpoint between the two agents

which is not strategy proof. In fact, we can show that no strategy
proof mechanism can do better than a constant factor approximation.

Theorem 6. No deterministic and strategy proof mechanism for lo-
cating a facility can do better than 8/7-approximate the optimal com-
plemented Gini index of utilities.

Proof. Suppose there exists a strategy proof mechanism that pro-
vides better than a 8/7-approximation. Consider two agents, one at
1/3 and another at 2/3. There are two cases. In the first case, the
mechanism locates the facility in [0, 1/2]. The second case, when the
mechanism locates the facility in (1/2, 1] is dual and we need not
consider further. Suppose the agent at 2/3 mis-reports their location
as 1. An optimal mechanism now puts the facility at 2/3 giving a com-
plemented Gini index of 1. To achieve the approximation ratio, the
complemented Gini index must again be greater than 7/8. This puts
the facility in the interval (1/2, 5/6). Note that this is now closer to the
actual location of the agent at 2/3 than the previous location of the fa-
cility in [0, 1/2]. Hence, this agent has an incentive to misreport. This
contradicts the assumption that the mechanism is strategy proof.

There remains a small gap beween the approximation ratio of 6/5
achieved by the MIDORNEAREST mechanism and this lower bound
of 8/7. It is an interesting open problem to close this gap.

6 Randomized mechanisms
Randomization is often a simple and attractive mechanism to achieve
better performance. For example, the randomized LRM mechanism
3/2-approximates the maximum distance any agent must travel in
expectation. This is a better approximation ratio than deterministic
mechanisms can achieve as no such strategy proof mechanism can do
better than 2-approximate the maximum distance. Indeed, the LRM
mechanism is optimal wrt optimizing the maximum distance as no
randomized and strategy proof mechanism can do better. The LRM
mechanism does a less good job at approximating the complemented
Gini index of utilities.

Theorem 7. The LRM mechanism 40/27-approximates the optimal
complemented Gini index of utilities in expectation (≈ 1.48).

Proof. For a single agent, the LRM mechanism is optimal and lo-
cates the facility at the agent. The complemented Gini index of utili-
ties is then 1 which is optimal.

For two agents, we suppose one agent is at 0 and the other at a with
0 ≤ a ≤ 1. With probability 1/2, the facility is located at a/2 which
gives an optimal complemented Gini index of utilities of 1. With the
remaining probability, the facility is located at 0 or a which gives
a sub-optimal complemented Gini index of utilities of 1 − a

2(2−a)
.

This is minimized for a = 1 when the complemented Gini index of
utilities is 1/2. The LRM mechanism thus has an expected comple-
mented Gini index of utilities that is 3/4, compared to an optimal of
1. Thus, it 4/3-approximates the optimal.

For three agents, we suppose one agent is at 0, another at a and the
third at b with 0 ≤ a ≤ b ≤ 1. Without loss of generality, we suppose
2a ≤ b (otherwise we reflect problem). The Gini index of utilities is
minimized when the facility is at b/2 and the complemented Gini in-
dex of utilities is 1 − 4a

3(6−3b+2a)
. With probability 1/2, the LRM

mechanism locates the facility at b/2 which gives an optimal comple-
mented Gini index of utilities of 1 − 4a

3(6−3b+2a)
. With probability

1/4, the facility is located at 0 which gives a sub-optimal comple-
mented Gini index of utilities of 1 − 2b

3(3−a−b)
. With the remaining



probability 1/4, the facility is located at b which gives a sub-optimal
complemented Gini index of utilities of 1 − 2b

3(3+a−2b)
. The ex-

pected complemented Gini index of utilities is thus 1− 2a
3(6−3b+2a)

−
b

6(3−a−b)
− b

6(3+a−2b)
. The ratio of this with the optimal is max-

imized by a = 1/2 and b = 1 when the expected value is 25/36
compared to an optimal of 5/6. Hence the LRM mechanism 6/5-
approximates the optimal.

For four or more agents, we suppose without loss of generality that
the leftmost agent is at 0 (i.e. x1 = 0). Suppose the rightmost agent
xn < 1. Then if we map the agent at xi to xi

xn
, we will stretch the

distribution of agents out, increasing any inequitability. Hence, the
worst inequitability occurs when xn = 1. We consider two cases.
In the first, with probability 1/2, the facility is located at 1/2. Agents
then must have utility 1/2 or greater. The most inequitable case is
when one agent has utility 1, and all other agents have utility 1/2.
This corresponds to one agent at 1/2 and all other agents at 0 or 1,
giving a Gini index of utilities of (n−1)

n(n+1)
. Hence, the complemented

Gini index of utilities is 1 − (n−1)
n(n+1)

or greater. This is minimized
for n = 4 when it gives a complemented Gini index of utilities of
17/20. In the second case, with probability 1/2, the facility is located
at one of the end points. Let xi be the location of agent i. The second
case contributes 1/2 − 1/4(

∑
i,j |xi−xj |
2n

∑
i xi

+
∑

i,j |(1−xi)−(1−xj)|
2n

∑
i(1−xi)

) to
the expected complemented Gini index of utilities. This simplifies
to 1/2−

∑
i,j |xi − xj |/8n( 1∑

i xi
+ 1∑

i(1−xi)
). This is minimized for

x1 = 0, and xi = 1 for i > 1 (or dually for xn = 1 and xi = 0
for i < n) and n = 4 when it takes the value 1/4. Thus the expected
complemented Gini index of utilities is at least 17/40 + 1/4 or 27/40.
Thus the LRM mechanism is at least an 40/27-approximation of the
optimal complemented Gini index of utilities.

While an approximation ratio of 40/27 might seem reasonable, it is
perhaps disappointing given that the deterministic MIDORNEAREST

mechanism does better, achieving an approximation ratio of the op-
timal complemented Gini index of utilities of just 6/5.

7 Two facility location

We next consider how these results extend to multiple facilities. With
two facilities, the ENDPOINT mechanism is the only strategy proof
and deterministic mechanism with a bounded approximation ratio
of the optimal maximum distance or of the optimal minimum util-
ity. More precisely, it 2-approximates the optimal maximum dis-
tance, and 3/2-approximates the optimal minimum utility. As the
ENDPOINT mechanism is strategy proof is does not bound the ap-
proximation ratio of the Gini index of distances or of utilities. With
respect to the complemented Gini index of utilities, it offers a good
approximation ratio of the optimal. However, somewhat surprisingly,
it does not offer the best possible ratio amongst strategy proof and
deterministic mechanisms.

Theorem 8. The ENDPOINT mechanism 35/29-approximates the op-
timal complemented Gini index of utilities (≈ 1.21).

Proof. With two or fewer agents, the ENDPOINT mechanism re-
turns an optimal solution in which both the utilities and the comple-
mented Gini index of utilities are maximal. Therefore we consider
three or more agents. With the ENDPOINT mechanism, the leftmost
and rightmost agents must have utility 1, while the other agents have
utility between 1/2 and 1. Suppose there are n agents (n ≥ 3) with

utilities in [1/2, 1], and two of the agents have utility 1. Then the min-
imum complemented Gini index of utilities (or equivalently the max-
imum Gini index of utilities) is when n − 2 agents have utility 1/2,
and two have utility 1. This occurs when one agent is at 0, another is
at 1, and the final n − 2 are at 1/2, with the facilities located at the
two endpoints. In this case, the Gini index of utilities is 2(n−2)

n(n+2)
. This

is maximized for n = 5, when it is 6/35. The corresponding comple-
mented Gini index of utilities is 29/35. Coincidently, when one agent
is at 0, another is at 1, and the final n − 2 are at 1/2 there is an opti-
mal, perfectly equitable outcome when we locate facilities at 1/4 and
3/4. The optimal complemented Gini index of utilities in this case is
1. This gives an approximation ratio of the complemented Gini index
of utilities of 35/29.

We now define a new mechanism, the truncated ENDPOINT mech-
anism which performs better. For two or fewer agents, this simply
applies the ENDPOINT mechanism. For three or more agents, if x1

is the leftmost agent, and xn is the rightmost then it locates the left
facility at max(x1, 1/4) and the right facility at min(3/4, xn). The
truncated ENDPOINT mechanism trivially retains the strategy proof-
ness of the original. It also offers a better approximation ratio than
the original ENDPOINT mechanism.

Theorem 9. The truncated ENDPOINT mechanism 15/14-
approximates the optimal complemented Gini index of utilities
(≈ 1.07).

Proof. With two or fewer agents, the truncated ENDPOINT mech-
anism returns an optimal and perfectly equitable solution in which
both the utilities and the complemented Gini index of utilities are
maximal. Therefore we consider three or more agents. With the trun-
cated ENDPOINT mechanism, all agents must have utility between
3/4 and 1. Suppose there are n agents (n ≥ 3) with utilities in [3/4, 1].
Then the minimum complemented Gini index of utilities (or equiv-
alently the maximum Gini index of utilities) is when n − 1 agents
have utility 3/4 and the other agent has utility 1. This occurs when
one agent is at 0, another is at 3/4 and n − 2 are at 1/2, and when
the truncated ENDPOINT mechanism places facilities at 1/4 and 3/4.
In this case, the Gini index of utilities is (n−1)

n(3n+1)
. This is maximized

for n = 3, when it is 1/15. The corresponding complemented Gini
index of utilities is 14/15. Coincidently, when the agents are at 0, 1/2
and 3/4, there is an optimal, and perfectly equitable solution in which
facilities are at 1/4 and 1, and the complemented Gini index of util-
ities is 1. This gives an approximation ratio of the complemented
Gini index of utilities for the truncated ENDPOINT mechanism of
15/14.

We now prove no strategy proof and deterministic mechanism for
two facilities can do better than 30/29-approximate the optimal com-
plemented Gini index (≈ 1.03). This leaves a small gap with the
approximation ratio of 15/14 (≈ 1.07) achieved by the truncated
ENDPOINT mechanism. It is an interesting open question to close
this gap.

Theorem 10. No strategy proof and deterministic mechanism for
two facilities can do better than 30/29-approximate the optimal com-
plemented Gini index of utilities (≈ 1.03).

Proof. We suppose a strategy proof and deterministic mechanism
exists with an approximation ratio smaller that 30/29. Consider three
agents, one at 0, another at 1/2 and the final agent at 3/4. The optimal
location of facilities that maximizes the complemented Gini index



of utilities (or equivalently minimizes the Gini index of utilities) has
one facility at 1/8, and the other at 5/8 giving a complemented Gini
index of 1. The most right that the leftmost facility can be and the
approximation ratio of the complemented Gini index be smaller than
30/29 is to the left of 9/13. If the rightmost facility is at 9

13
then the

minimal Gini index of utilities is when the leftmost facility is at 1/13
and the Gini index is 1/30. The complemented Gini index is then
29/30, which corresponds to an approximation ratio of the optimal
complemented Gini index of 30/29. The agent at 3/4 therefore travels
a distance greater than 3/4 − 9/13 (which is 3/52).

Now suppose the agent at 3/4 mis-reports their location as 1. The
optimal location of facilities that maximizes the complemented Gini
index of utilities (or equivalently minimizes the Gini index of utili-
ties) for the reported locations of the agents has one facility at 1/4,
and the other at 3/4 giving a complemented Gini index of 1. The
most left that the leftmost facility can be and the approximation ratio
of the complemented Gini index be smaller than 30/29 is to the right
of 9/13. If the rightmost facility is at 9

13
then the minimal Gini index

of utilities for the reported locations is when the leftmost facility is
at 5/26 and the Gini index is 1/30. The complemented Gini index is
then 29/30, which corresponds to an approximation ratio of the opti-
mal complemented Gini index of 30/29. Note also that the rightmost
facility cannot be to the right of 3/4 + 3/52 as this gives an approxi-
mation ratio of the complemented Gini index greater than 30/29. The
agent at 3/4 therefore travels a distance less than 3/4 − 9/13 (which
is 3/52). Thus, by mis-reporting their location, the agent at 3/4 re-
duces their distance from the facility from more than 3/52 to less than
3/52.

8 Experiments
These theoretical results on approximation ratios are all worst case.
They provide bounds on how poorly a mechanism may perform.
They do not inform us how well they tend to perform. We therefore
ran some experiments to explore how well these mechanism generate
equitable solutions. In each experiment, we generated 1024 instances
at each problem size from 21 to 26 agents. Agents were located ac-
cording to one of three different models: (1) uniformly on [0, 1]; (2)
following a Bates distribution with parameter k = 1 to 10; or (3)
according to a bimodal Kumaraswamy distribution.

The Bates distribution is a probability distribution of the mean of
k statistically independent uniform random variables on the unit in-
terval. For k = 1, it is simply the uniform distribution. For k = 2,
it is the triangular distribution. For k large, it approaches a normal
Gaussian distribution. The Kumaraswamy distribution has two shape
parameters, a and b and is bimodal when a = b = 1/2. The Ku-
maraswamy distribution is similar to the Beta distribution, but is
much simpler to use in simulation studies since its cumulative dis-
tribution function (CDF) has a simple closed form:

prob(Z ≤ x) = 1− (1− xa)b = 1−
√

(1−
√
x)

This choice of parameters (a = b = 1/2) tends to concentrate agents
around either 0 or 1. See Figure 2 for details.

In Figure 2, we plot the approximation ratio observed for the
MEDIAN, LEFTMOST and MIDORNEAREST mechanisms on prob-
lems where agents are located uniformly on [0, 1]. We observe
that the MIDORNEAREST mechanism performs best, especially on
smaller problems where the MEDIAN mechanism can perform less
well. The approximation ratios for all of the mechanisms are signif-
icantly less than the worst case bounds. For instance, the MEDIAN
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Figure 2: Probability density function f(x) for the bimodal Ku-
maraswamy distribution used in the experiments.

mechanism, especially on larger problems, is much better than the
2-approximation realized in the worst case. In fact, solutions tend to
be within a few percent of the optimal complemented Gini index.
We observe similar results with problems coming from the Bates or
bimodal Kumaraswamy distributions.

9 Related Work

Beginning with Procaccia and Tennholtz [20], most studies of strat-
egy proof mechanisms for facility location have focused on approx-
imating the total and maximum distance (e.g. [7, 9, 10, 11, 12, 22,
23]). Indeed, in a recent survey of mechanism design for facility lo-
cation, strategy proof mechanisms which approximate well the total
or maximum distance that agents travel has been called the “classic
setting” [5]. One of the simplest measures of equitability in facility
location is the maximum distance agents travel. Marsch and Schilling
[14] claim that this “is the earliest and most frequently used measure
that has an equity component” in facility location problems, that “it
has long been used as a more equitable alternative to the p-median
problem which minimizes [total] travel distance”, and that it “quan-
tifies the popular Rawlsian criteria of equity which seeks to improve
as much as possible those who are worst-off”.

Related to maximum distance is minimum happiness. The “hap-
piness” of agent i is hi = 1 − di/dimax where dimax is the max-
imum possible distance agent i can travel [15, 16]. For instance,
with agents and facilities constrained to the interval [0, 1], dimax =
max(xi, 1 − xi). This normalization changes the approximation ra-
tios achievable compared to approximating just the maximum dis-
tance. For example, the MEDIAN mechanism, which 2-approximates
the maximum distance, does not bound the minimum happiness of
any agent.

Another common measure of equitability is variance. For example,
Maimon [13] develops an algorithm to locate a facility on a tree net-
work minimizing the variance in distances agents travel. Procaccia
et al. [19] explore a different use of variance, exploring the trade-
off in randomized mechanisms between variance in the distribution
of the location a facility and the approximation ratio of the optimal
total or maximum distance agents travel. Other simple measures of
equitability are the range and absolute deviation in distances agents
travel [14]. Berman and Kaplan [4], for example, argue that the latter
is “a natural measure of the equity” of facility location problems and
provide an efficient algorithm to compute the location of a facility on
a general network to minimize this measure.

There are other indices of inequality besides the Gini index. For
example, a common measure of income inequality is the Hoover
index (also known as the Robin Hood or Schutz index), and this
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Figure 3: Median approximation ratio of the complemented Gini index of utilities for the deterministic MEDIAN, LEFTMOST and
MIDORNEAREST mechanisms on uniform problem instances. Error bars give upper and lower quartile performance.

has been applied to facility location [17]. As a second example, the
Atkinson index has been used in social choice settings such as re-
source allocation [21]. Like the Gini index, no strategy proof mech-
anism can approximate either index to within a constant factor.

10 Conclusions

We have proposed approximate mechanism design for equitability.
For the facility location problem, we argued why the Gini index of
agent utilities is a better measure of equitability than the Gini index
of distances that agents travel. We first proved an impossibility re-
sult that strategy proof mechanism for one or more facilities cannot
bound the approximation ratio of the optimal Gini index. We instead
turn the problem on its head by considering approximation ratios of
the complemented Gini index of utilities. For both deterministic and
randomized mechanisms for a single facility, we identified mecha-
nisms that bound the approximation ratio of this objective. In the case
of randomized mechanisms, we construct a new mechanism with an
optimal ratio. We then extended results to multiple facilities. For in-
stance, we proposed a new strategy proof mechanism with a better
approximation ratio for two facilities than the ENDPOINT mecha-
nism, the only strategy proof mechanism with a bounded approxi-
mation ratio of the optimal minimum utility or maximum distance.
Experiments showed that these mechanisms perform well, returning
solutions close to optimal.
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